Recursive Data Representations

We can define structures with pointer fields that refer to the
structure type containing them.

struct list {
i nt data;
struct list *next;

data next

The pointer variable next iscdled alink. Each structure is
linked to a succeeding structure by way of the fiedld next.
The pointer variable next contains an address of either the
location in memory of the successor struct i st

element or the specia value NULL.

Example:
struct list a, b, c;
a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;
a b c
1 NULL 2 NULL 3 NULL
data next data next data next
a. next = &b;
b. next = &c;
a b c
1 o 2 y 3 NULL
a. next - >data hasvdue 2
a. next - >next - >data hasvadue 3

b. next - >next - >data error!!

Static and Dynamic Variables

- Static Variables:

- They are created during compilation. (Fixed
memory is reserved for them.)

- They cannot be allocated/deallocated during the
execution of the program.

- Names are associated with them.

int Xx;
char y[10];
int z[100];

- Dynamic Variables:

- They are created (allocated) and deallocated
during the execution of the program.

- Nno names are associated with them. The only way
to access them is to use pointers.

- They don't exist during compilation. Once they
are created they contain data and must have atype
like any other variable. Thus we can talk about
creating a new dynamic variable of type x and
setting a pointer to point to it, or returning a
dynamic variable of type x to the system
(deallocation).

A Conceptual View of Memory

mai n

call ed and
st andard
functions

PROGRAM MEMORY

program system
global heap stack
DATA MEMORY
RAM

Dynamic Data
For example:
- We must maintain alist of data
- At some moments, the list is small, so we want to use
only alittle memory

. At other moments, the list is larger, so we need to use
more memory

- Declaring variables in the standard way won't work
here because we don’t know how many variables to
declare

. We need a way to allocate and deallocate data
dynamically (i.e., on the fly)

Dynamic Memory Allocation

Creating and maintaining dynamic data structures
requires dynamic memory allocation — the ability for
aprogram to obtain more memory space at execution
time to hold new values, and to release space no
longer needed.

In C, functions mal | oc and f r ee, and operator
si zeof areessential to dynamic memory allocation.

- Unary operator si zeof is used to determine the sizein
bytes of any data type.
eg.
si zeof (doubl e)
si zeof (i nt)

- Function mal | oc takes as an argument the number of
bytes to be allocated and return a pointer of type voi d *
to the allocated memory. (A void * pointer may be
assigned to a variable of ay pointer type.) It is normaly
used with the si zeof operator.

Example: Linked Lists

struct node{ - It is an important data structure.
i nt dat a; - An abgtraction of alist: i.e. a sequence of nodes in which
struct node *next; each node is linked to the node following it.

}; - Lists of data can be gstored in arrays, but linked lists

provide several advantages:
struct node *ptr;

Arrays
ptr = (struct node *) /*type casting */ - In an array each node (element) follows the previous one
mal | oc(si zeof (struct node)); physically (i.e. contiguous spaces in the memory)
- Arrays are fixed size: ether too big (unused space or not
- big enough (overflow problem)
ptr [— ” - Maximum size of the array must be predicted which is
sometimes impossible.
- Inserting and deleting elements into an array is difficult.
Linked Ligts
- Linked lists are appropriate when the number of data
. Function f r ee deallocates memory- i.e. the memory is elements to be represented in the data structure at once is
returned to the system so that the memory can be unpredictable.
redlocated in the future. - Linked ligts are dynamic, so the length of a list can
eg. increase or decrease as necessary.
- Each node does not necessarily follow the previous one
free(ptr); physicaly in the memory.
- Linked lists can be maintained in sorted order by
ptr inserting or deleting an element at the proper point in the
list.

SimpleLinked List

head

- The head pointer addresses the first node of the list, and
each node points at a successor node. The last node has a
link value NULL.

Empty List

Empty Linked ligt is a single pointer having the vaue of
NULL.

head = NULL;

X

head

Nodes

A node in alinked list is a structure that has at least two
fields. One of the fields is a data field; the other is a pointer
that contains the address of the next node in the sequence.

A nodewith onedatafield:

B

nunmber |ink

A nodewith 3 datafields:

—

nanme id grdPtsnext_student

A structurein anode:

nanme address phone

dat a next

struct node{
int nunber;
struct node * |ink

struct student{
char name[20];
int id;
doubl e grdPts;
struct student
*next _student;

struct person{
char nane[20] ;
char address[30];
char phone[10];
b

struct person_node{
struct person data
struct person_node
*next ;

10

Basic Linked List Operations

1. Add anode

2. Delete a node

3. Looking up a node

4. Ligt Traversal (e.g. Counting nodes)

Add aNode
There are four steps to add a node to a linked list:

1. Allocate memory for the new node.

2. Determine the insertion point (you need to know only
the new node's predecessor (pPr e)

3. Point the new node to its successor.

4. Point the predecessor to the new node.

Pointer to the predecessor (pPr e) can be in one of two
states:

- it can contain the address of a node (i.e. you are
adding somewhere after the first node — in the
middle or a the end)

- it can be NULL (i.e. you are adding either to an
empty list or a the beginning of the list)

11

Addingto Empty List

BEFORE

pNew q 39

pNew- >next = pHead; /1l set link to NULL
pHead = pNew, /1 point list to first node

AFTER

pNew » 39

phest B/

pPre |X|

12

Add Node at Beginning

BEFORE

pNew " 39
pHead EI—’ 75

pPre |E

/1 Sanme code

124

pNew- >next = pHead;

pHead = pNew,

AFTER

pNew E|—’_ 39/

pread m/ e

pPre &

124

Add Nodein Middle

BEFORE

pNew IEI_' 96

——_——— 4 75 124
> =" pPre
pNew- >next = pPre->next;
pPre->next = pNew,
AFTER
pNew 96 /
v
> e .-y 75 124

13

14

Add Node at End

BEFORE

pNew EI—’ 134

pPre

pNew- >next
pPr e- >next
OR:

/1 Same as
m ddl e
pNew >next
pPre- >next

AFTER

©
Z
9]
=
A

124 ><

\|

NULL;
pNew;

the code for adding a node in the

pPr e- >next ;
pNew,

> 134

124 I\

]
]
]
~l
a1
\ 4

15

Inserting a Nodeto a Linked List

Given the head pointer pHead), the predecessor (PPr e)
and the data to be inserted (i t em), we must alocate
memory for the new node (pNew) and adjust the link

pointers.
// Insert a node into a |linked |ist

struct node *pNew;

pNew =(struct node *) mall oc(sizeof (struct
node)) ;

pNew- >data = item

if (pPre == NULL){

/1 Addi ng before first node or to enpty |ist
pNew >next = pHead,;
pHead = pNew;

}

el se {
/1 Adding in mddle or at end
pNew >next = pPre->next;
pPre->next = pNew,

}

16

Delete a Node

Deleting a node requires that we logicaly remove the node
from the lit by changing various link pointers and then
physically deleting the node from the heap.

We can delete
- the firgt node
- any node in the middle
. the end node

To logicaly delete a node:
1. first locate the node itself (pCur) and its predecessor
(pPre)

2. change its predecessor’s link field to point to the deleted
node’' s successor.

3. recycle the node using free.
Note: We may be ddeting the only nodein alist. This will

result in an empty list in which case the head pointer is set
to NULL.

17

Delete First Node

BEFORE

A 4

pHead 3—> 75

124

pPre & PCU‘VWSI

pHead = pCur -> next;
free (pCur);

AFTER

4
pHead Recycled > 124
pPre & DCU‘VWSI

e - o

18

General Delete Case

BEFORE
=== 75 > 96 > 124
pPre pCur

pPre->next = pCur->next;
free(pCur);

AFTER /\

=== 15 Recycled 124

pPre pCur

Deleting a node

Given a pointer to the head of the list, the node to be
deleted, and the delete node's predecessor, we delete the
node and recycle its memory.

/1 Delete a node froma linked |ist
if (pPre == NULL)
/1 Deleting first node
pHead = pCur->next;
el se
/1 Deleting other nodes
pPre->next = pCur ->next;

free(pCur);

20

Search Linked List
Both insert and delete operations have to search the linked list.
. To add a node, we must identify the logica predecessor
of the new node.
- To delete a node, we must identify the location of the
node to be deleted and its logical predecessor.

Basic Search Concept

Given atarget value, the search attempts to locate the requested
node in the linked list. If a node in the lis matches the target
value, the search return true; otherwise it returns false.

/] Search nodes in a linked I|ist
pPre = NULL;
pCur = pHead,;

/1l Search until target is found or we reach
/1 the end of I|ist
while (pCur !'= NULL && pCur->data != target){

pPre = pCur;
pCur = pCur->next,;
}
/I Determine if target is found
if (pCur)
found = 1;
el se

found = O;

21

Traversing Linked Lists
List traversal requires that al of the datain the list be processed.

/Il Traverse a linked I|ist
struct node *pWal ker;

pval ker = pHead,;
printf(“List contains:\n");

whil e (pwval ker){

printf(“%d ", pWal ker->data);
pWal ker = pWal ker ->next;

22

