
 1

Recursive Data Representations

We can define structures with pointer fields that refer to the
structure type containing them.

struct list {
 int data;
 struct list *next;
}

The pointer variable next is called a link. Each structure is
linked to a succeeding structure by way of the field next.
The pointer variable next contains an address of either the
location in memory of the successor struct list
element or the special value NULL.

data next

 2

Example:

struct list a, b, c;

a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;

a.next = &b;
b.next = &c;

a.next->data has value 2
a.next->next->data has value 3

b.next->next->data error !!

b a c
NULL NULL NULL 3 2 1

b a c
NULL 3 2 1

data data data next next next

 3

Static and Dynamic Variables

• Static Variables:

− They are created during compilation. (Fixed

memory is reserved for them.)
− They cannot be allocated/deallocated during the

execution of the program.
− Names are associated with them.

int x;
char y[10];
int z[100];

• Dynamic Variables:

− They are created (allocated) and deallocated

during the execution of the program.
− no names are associated with them. The only way

to access them is to use pointers.
− They don’t exist during compilation. Once they

are created they contain data and must have a type
like any other variable. Thus we can talk about
creating a new dynamic variable of type x and
setting a pointer to point to it, or returning a
dynamic variable of type x to the system
(deallocation).

 4

A Conceptual View of Memory

PROGRAM MEMORY

RAM

main

called and
standard
functions

global

program
heap

system
stack

DATA MEMORY

 5

Dynamic Data
For example:

• We must maintain a list of data
• At some moments, the list is small, so we want to use

only a little memory

• At other moments, the list is larger, so we need to use
more memory

• Declaring variables in the standard way won’t work
here because we don’t know how many variables to
declare

• We need a way to allocate and deallocate data
dynamically (i.e., on the fly)

 6

Dynamic Memory Allocation

Creating and maintaining dynamic data structures
requires dynamic memory allocation – the ability for
a program to obtain more memory space at execution
time to hold new values, and to release space no
longer needed.

In C, functions malloc and free, and operator
sizeof are essential to dynamic memory allocation.

• Unary operator sizeof is used to determine the size in

bytes of any data type.
e.g.
sizeof(double)
sizeof(int)

• Function malloc takes as an argument the number of

bytes to be allocated and return a pointer of type void *
to the allocated memory. (A void * pointer may be
assigned to a variable of any pointer type.) It is normally
used with the sizeof operator.

 7

Example:

struct node{
 int data;
 struct node *next;
};

struct node *ptr;

ptr = (struct node *) /*type casting */
 malloc(sizeof(struct node));

• Function free deallocates memory- i.e. the memory is
returned to the system so that the memory can be
reallocated in the future.
e.g.

free(ptr);

?

?

ptr

ptr ?

 8

Linked Lists

• It is an important data structure.
• An abstraction of a list: i.e. a sequence of nodes in which

each node is linked to the node following it.
• Lists of data can be stored in arrays, but linked lists

provide several advantages:

Arrays
− In an array each node (element) follows the previous one

physically (i.e. contiguous spaces in the memory)
− Arrays are fixed size: either too big (unused space or not

big enough (overflow problem)
− Maximum size of the array must be predicted which is

sometimes impossible.
− Inserting and deleting elements into an array is difficult.

Linked Lists
− Linked lists are appropriate when the number of data

elements to be represented in the data structure at once is
unpredictable.

− Linked lists are dynamic, so the length of a list can
increase or decrease as necessary.

− Each node does not necessarily follow the previous one
physically in the memory.

− Linked lists can be maintained in sorted order by
inserting or deleting an element at the proper point in the
list.

 9

Simple Linked List

• The head pointer addresses the first node of the list, and
each node points at a successor node. The last node has a
link value NULL.

Empty List

Empty Linked list is a single pointer having the value of
NULL.

head = NULL;

head

head

 10

Nodes

A node in a linked list is a structure that has at least two
fields. One of the fields is a data field; the other is a pointer
that contains the address of the next node in the sequence.

A node with one data field:

struct node{
 int number;
 struct node * link;
};

A node with 3 data fields:

struct student{
 char name[20];
 int id;
 double grdPts;
 struct student
 *next_student;
};

A structure in a node:

struct person{
 char name[20];
 char address[30];
 char phone[10];
};

struct person_node{
 struct person data;
 struct person_node
 *next;
};

 name id grdPtsnext_student

number link

name address phone

 data next

 11

Basic Linked List Operations

1. Add a node
2. Delete a node
3. Looking up a node
4. List Traversal (e.g. Counting nodes)

Add a Node

There are four steps to add a node to a linked list:

1. Allocate memory for the new node.
2. Determine the insertion point (you need to know only

the new node’s predecessor (pPre)
3. Point the new node to its successor.
4. Point the predecessor to the new node.

Pointer to the predecessor (pPre) can be in one of two
states:

• it can contain the address of a node (i.e. you are
adding somewhere after the first node – in the
middle or at the end)

• it can be NULL (i.e. you are adding either to an
empty list or at the beginning of the list)

 12

Adding to Empty List

BEFORE

pNew->next = pHead; // set link to NULL
pHead = pNew; // point list to first node

AFTER

39 pNew

pHead

pPre

39 pNew

pHead

pPre

 13

Add Node at Beginning

BEFORE

// Same code
pNew->next = pHead;
pHead = pNew;

AFTER

39 pNew

pHead

pPre

75 124

39 pNew

pHead

pPre

75 124

 14

Add Node in Middle

BEFORE

pNew->next = pPre->next;
pPre->next = pNew;

AFTER

96 pNew

pPre

75 124

96 pNew

pPre

75 124

 15

Add Node at End

BEFORE

pNew->next = NULL;
pPre->next = pNew;
OR:
// Same as the code for adding a node in the
middle
pNew->next = pPre->next;
pPre->next = pNew;

AFTER

134 pNew

pPre

75 124

134 pNew

pPre

75 124

 16

Inserting a Node to a Linked List

Given the head pointer (pHead), the predecessor (pPre)
and the data to be inserted (item), we must allocate
memory for the new node (pNew) and adjust the link
pointers.
// Insert a node into a linked list

 struct node *pNew;

 pNew =(struct node *) malloc(sizeof(struct
 node));

 pNew->data = item;

 if (pPre == NULL){
 //Adding before first node or to empty list

 pNew->next = pHead;
 pHead = pNew;

 }
 else {
 // Adding in middle or at end

 pNew->next = pPre->next;
 pPre->next = pNew;

 }

 17

Delete a Node

Deleting a node requires that we logically remove the node
from the list by changing various link pointers and then
physically deleting the node from the heap.

We can delete

• the first node
• any node in the middle
• the end node

To logically delete a node:
1. first locate the node itself (pCur) and its predecessor

(pPre)
2. change its predecessor’s link field to point to the deleted

node’s successor.
3. recycle the node using free.

Note: We may be deleting the only node in a list. This will
result in an empty list in which case the head pointer is set
to NULL.

 18

Delete First Node

BEFORE

pHead = pCur -> next;
free (pCur);

AFTER

pHead

pPre

75 124

pCur

pHead

pPre

Recycled 124

pCur

 19

General Delete Case

BEFORE

pPre->next = pCur->next;
free(pCur);

AFTER

75 124 96

pPre pCur

75 124 Recycled

pPre pCur

 20

Deleting a node

Given a pointer to the head of the list, the node to be
deleted, and the delete node’s predecessor, we delete the
node and recycle its memory.

// Delete a node from a linked list
 if (pPre == NULL)
 // Deleting first node
 pHead = pCur->next;
 else
 // Deleting other nodes
 pPre->next = pCur ->next;

 free(pCur);

 21

Search Linked List
Both insert and delete operations have to search the linked list.
• To add a node, we must identify the logical predecessor

of the new node.
• To delete a node, we must identify the location of the

node to be deleted and its logical predecessor.

Basic Search Concept
Given a target value, the search attempts to locate the requested
node in the linked list. If a node in the list matches the target
value, the search return true; otherwise it returns false.

// Search nodes in a linked list
pPre = NULL;
pCur = pHead;

// Search until target is found or we reach
// the end of list
while (pCur != NULL && pCur->data != target){
 pPre = pCur;
 pCur = pCur->next;
}

//Determine if target is found

if (pCur)
 found = 1;
else
 found = 0;

 22

Traversing Linked Lists

List traversal requires that all of the data in the list be processed.

// Traverse a linked list

struct node *pWalker;

pWalker = pHead;
printf(“List contains:\n”);

while (pWalker){
 printf(“%d ”, pWalker->data);
 pWalker = pWalker ->next;
}

