
 1

Performance Categories
of Algorithms

• Sublinear - O(logN)

• Linear - O(N)

• Nearly linear - O(NlogN)

• Quadratic - O(N2)

• Exponential - O(2N)

 O(N!)

 O(NN)

 2

An Exponential Algorithm

Towers of Hanoi Problem: involves moving a
specified number of disks (N) that are all different
sizes from one tower to another.

void tower(int n, char start, char finish, char temp)
{
 if (n == 1)
 printf(“Move from %c to %c\n”, start, finish);
 else {
 tower(n-1, start, temp, finish);
 printf(“Move from %c to %c \n”, start, finish);
 tower(n-1, temp, finish, start);
 }
}

 3

Towers of Hanoi – Runtime

• For 3 rings - 7 operations
o Cost = (2N) – 1

• Each time we increment N by 1, we double the amount
of work

• Run-time trace of function tower with 4 disks:

Original
call with
n = 4

Call with
n = 3

Call with
n = 3

Call with
n = 2

Call with
n = 2

Call with
n = 2

Call with
n = 2

Call with
n = 1

Call with
n = 1

Call with
n = 1

Call with
n = 1

Call with
n = 1

Call with
n = 1

Call with
n = 1

Call with
n = 1

 4

 5

Effects of Exponents

Consider Towers of Hanoi (or other 2N

algorithm) for N of only 256:

Time cost is a number with 78 digits to
the left of the decimal.

For comparison:
• Number of microseconds since the Big

Bang: a number with 24 digits.
• Number of protons (est’d) in the known

universe: a number with 77 digits.

 6

Reasonable vs Unreasonable

Reasonable Algorithms...
• Have N only as a polynomial factor

- O (logN)
- O (N)
- O (NK) where K is a constant

Unreasonable Algorithms...
• Have N as an exponential factor
- O (2N)
- O (N!)
- O (NN)

 7

Example Problems

1. Algorithm A runs in O(N2) time, and for an input size of 4,
the algorithm runs in 10 milliseconds, how long can you
expect it to take to run on an input size of 16?

2. Algorithm A runs in O(log2N) time, and for an input size of

16, the algorithm runs in 28 milliseconds, how long can you
expect it to take to run on an input size of 64?

3. Algorithm A runs in O(N3) time. For an input size of 10, the

algorithm runs in 7 milliseconds. For another input size, the
algorithm takes 189 milliseconds. What was that input size?

4. For an O(Nk) algorithm, where k is a positive rational
number, a friend tells you that instance of size M took 16
seconds to run. You run an instance of size 4M and find that
it takes 256 seconds to run. What is the value of k?

5. Algorithm A runs in O(N3) time and Algorithm B solves the

same problem in O(N2) time. If algorithm A takes 5
milliseconds to complete for an input size of 10, and
algorithm B takes 20 milliseconds for an input size of 10,
what is the input size that you expect the two algorithms to
perform about the same?

6. For an O(N3) algorithm, an instance with N = 512 takes 56

milliseconds. If you used a different-sized data instance and
it took 7 milliseconds how large must that instance be?

 8

Answers

1. Algorithm A runs in O(N2) time, and for an input size of 4,
the algorithm runs in 10 milliseconds, how long can you
expect it to take to run on an input size of 16?

42 162
----- = ------- => x =160ms
10ms x

2. Algorithm A runs in O(log2N) time, and for an input size of
16, the algorithm runs in 28 milliseconds, how long can you
expect it to take to run on an input size of 64?

 log 16 log64
------------ = ------------ => x =42 ms
 28 ms x

3. Algorithm A runs in O(N3) time. For an input size of 10, the
algorithm runs in 7 milliseconds. For another input size, the
algorithm takes 189 milliseconds. What was that input size?

103 N3
----- = ------- => N = 30
7 ms 189

 9

4. For an O(Nk) algorithm, where k is a positive rational
number, a friend tells you that instance of size M took 16
seconds to run. You run an instance of size 4M and find that
it takes 256 seconds to run. What is the value of k?

 Mk (4M)k 256
------- = ---------- => 4k = -------- => k = 2
16 ms 256 16

5. Algorithm A runs in O(N3) time and Algorithm B solves the
same problem in O(N2) time. If algorithm A takes 5
milliseconds to complete for an input size of 10, and
algorithm B takes 20 milliseconds for an input size of 10,
what is the input size that you expect the two algorithms to
perform about the same?
For algorithm A: O(N3) means

 execution time ≤ c1 * N3

 for N = 10 execution time is 5ms = c1 * 103
 so , c1 = 5 / 103
 For algorithm B: O(N2) means

 execution time ≤ c2 * N3

 for N = 10 execution time is 20 ms = c2 * 102
 so , c2 = 20 / 102

 what is N for which
 c1 * N3 = c2 * N2

Substitute for c1 and c2:
 5 / 103 * N3 = 20 / 102 * N2
=> N = 40

 10

6. For an O(N3) algorithm, an instance with N = 512 takes 56

milliseconds. If you used a different-sized data instance and
it took 7 milliseconds how large must that instance be?

5123 N3
----- = ------- => N =256ms
56ms 7

7. What is the computational complexity of the following
algorithm?

int N,j,k,sum = 0;

scanf(“%d”,&N);

for(j=0; j < N; j++){

 for(k=0; k < j; k++) {

 sum = sum + j * k;

 }
}

 11

8. What is the computational complexity of the following
algorithm? (Assume N is a positive integer)

int N,j,k,sum = 0;

scanf(“%d”,&N);

j = N;

while (j > 1) {

 k = 0;

 while (k > N){

 sum = sum + j * k;
 k ++;

 }
 j = j / 2;
}

 12

Binary Trees

Given the following postorder and inorder traversals of a
binary tree, draw the tree.

Postorder: ABCDEFIKJGH
Inorder: CBAEDFHIGKJ

 13

An Application of Binary Trees

Contemporary compilers make use of tree structures in
obtaining forms of an arithmetic expression for efficient
evaluation:

Example: Binary expression tree for
(A-B) + C * E/F

Inorder traversal gives infix form
Preorder traversal gives prefix form
Postoredr traversal gives postfix form

+

- /

A B * F

C D

 14

Exercise 1:

Consider the following node structure:
struct node {
 dataType data;
 struct node *left;
 struct node *right;
}

What is the output produced by the following function for
the pictured tree?

void treewalk(struct node *tree)
{
 if (tree == NULL)
 printf(“OOPS\n”);
 else{
 treewalk(tree->right);
 treewalk(tree->left);
 print(tree->data);
 }
}

 15

A

B C

D E F

G H

I J

tree

 16

Exercise 2:

a) Insert the following names into a binary search tree and
draw the resulting tree.

JONES
BILL
DAVE
MARY
LARRY
PAUL
PENNY
KATY
LEO
MIKE
BETTY
DON
ROGER
TOM

b) Delete JONES, PENNY, MARY

 17

QUEUES

Consider the circular array implementation of queues. In
this implementation limit the number of items in the queue
to one less than the number of elements in the array (i.e.
always keep one empty element at the end of the queue).
Using this solution, determine the conditions for checking
whether the queue is empty or full.

Adopt the following conventions for the front and rear:
front is to point at the next item to be removed from the
queue. rear is to point at the next available location, that is
the next location to be filled. As an illustration, the
following is a queue with three items:

0 1 2 3 4 5
A B C

front rear

Given the following declarations for the queue :

#define SIZE 100
struct queue{
 int items[SIZE];
 int front;
 int rear;
};
Write down the functions isEmpty(), isFull() and
enqueue().

 18

a) isEmpty() :

b) isFull():

c) enqueue():

int isEmpty(struct queue q){

}

int isFull(struct queue q){

}

void enqueue (struct queue *q, int item){

