Examples and Exercises on Linked Lists:

1. BuildOneTwoThree() Function

Here is simple function which uses pointer operations to build the list {1, 2, 3}. This function demonstrates how calls to malloc() and pointer assignments (=) work to build a pointer structure in the heap.

/*

Build the list {1, 2, 3} in the heap and store its head pointer in a local stack variable. returns the head pointer to the caller.

*/

struct node* BuildOneTwoThree() {

struct node* head = NULL;

struct node* second = NULL;

struct node* third = NULL;

head = malloc(sizeof(struct node)); // allocate 3 nodes in the heap

second = malloc(sizeof(struct node));

third = malloc(sizeof(struct node));

head->data = 1; // setup first node

head->next = second; // note: pointer assignment rule

second->data = 2; // setup second node

second->next = third;

third->data = 3; // setup third link

third->next = NULL;

// At this point, the linked list referenced by "head"

// matches the list in the drawing.

return head;

}

Exercise

Q: Write the code with the smallest number of assignments (=) which will build the

above memory structure.
· It requires 3 calls to malloc().
· 3 int assignments (=) to setup the ints.
· 4 pointer assignments to setup head and the 3 next fields.
With a little cleverness and knowledge of the C language, this can all be done with 7 assignment operations (=).
2. Length() Function

The Length() function takes a linked list and computes the number of elements in the list. Length() is a simple list function.

/* Given a linked list head pointer, compute and return the number of nodes in the list. */

int Length(struct node* head) {

struct node* current = head;

int count = 0;

while (current != NULL) {

count++;

current = current->next;

}

return count;

}

Exercise

void LengthTest() {

struct node* myList = BuildOneTwoThree();

int len = Length(myList); // results in len == 3

}

What if we said head = NULL; at the end of Length() — would that mess up the myList variable in the caller?

Ans: No. head is a local which was initialized with a copy of the actual parameter, but changes do not automatically trace back to the actual parameter. Changes to the local variables in one function do not affect the locals of another function.

Exercise

Q: What if the passed in list contains no elements, does Length() handle that case

properly?

Ans: Yes. The representation of the empty list is a NULL head pointer. Trace

Length() on that case to see how it handles it.
3. Correct Push() Code

The list is passed via a pointer to the head pointer. In the code, this amounts to use of '&' on the parameter in the caller and use of '*' on the parameter in the callee. Inside Push(), the pointer to the head pointer is named "headRef" instead of just "head" as a reminder that it is not just a simple head pointer.

/* Takes a list and a data value. Creates a new link with the given data and pushes it onto the front of the list. The list is not passed in by its head pointer. Instead the list is passed in as a "reference" pointer to the head pointer -- this allows us to modify the caller's memory. */

void Push(struct node** headRef, int data) {

struct node* newNode = malloc(sizeof(struct node));

newNode->data = data;

newNode->next = *headRef; // The '*' to dereferences back to the real head

*headRef = newNode; // ditto

}

void PushTest() {

struct node* head = BuildTwoThree();// suppose this returns the list {2, 3}

Push(&head, 1); // note the &

Push(&head, 13);

/* head is now the list {13, 1, 2, 3} */
}

4. CopyList()

Consider a CopyList() function that takes a list and returns a complete copy of that list. One pointer can iterate over the original list in the usual way. Two other pointers can keep track of the new list: one head pointer, and one tail pointer which always points to the last node in the new list. The first node is done as a special case, and then the tail pointer is used in the standard way for the others...

struct node* CopyList(struct node* head) {

struct node* current = head; // used to iterate over the original list

struct node* newList = NULL; // head of the new list

struct node* tail = NULL; // kept pointing to the last node in the new list

while (current != NULL) {

if (newList == NULL) { // special case for the first new node

newList = malloc(sizeof(struct node));

newList->data = current->data;

newList->next = NULL;

tail = newList;

}

else {

tail->next = malloc(sizeof(struct node));

tail = tail->next;

tail->data = current->data;

tail->next = NULL;

}

current = current->next;

}

return(newList);

}

Problems:
1. Given a list and an index, return the data in the nth node of the list. The nodes are numbered from 0. Assert fails if the index is invalid (outside 0..lengh-1).

int GetNth(struct node* head, int index) {

// Your code

}

2. Write a function DeleteList() that takes a list, deallocates all of its memory and sets its

head pointer to NULL (the empty list).

Hint: Use pointer to the head pointer
3. A more general version of Push(). Given a list, an index 'n' in the range 0..length, and a data element, add a new node to the list so that it has the given index.

void InsertNth(struct node** headRef, int index, int data) {

// your code...

}
4. Write a SortedInsert() function which given a list that is sorted in increasing order, and a single node, inserts the node into the correct sorted position in the list. While Push() allocates a new node to add to the list, SortedInsert() takes an existing node, and just rearranges pointers to insert it into the list.

void SortedInsert(struct node** headRef, struct node* newNode) {

// Your code...

}

5. Write an Append() function that takes two lists, 'a' and 'b', appends 'b' onto the end of 'a', and then sets 'b' to NULL (since it is now trailing off the end of 'a').

void Append(struct node** aRef, struct node** bRef) {

/* Your code...*/

}

6. Given a list, split it into two sublists — one for the front half, and one for the back half. If the number of elements is odd, the extra element should go in the front list. So FrontBackSplit() on the list {2, 3, 5, 7, 11} should yield the two lists {2, 3, 5} and {7, 11}. Getting this right for all the cases is harder than it looks. You should check your solution against a few cases (length = 2, length = 3, length=4) to make sure that the list gets split correctly near the short-list boundary conditions. If it works right for length=4, it probably works right for length=1000. You will probably need special case code to deal with the (length <2) cases.
/* Split the nodes of the given list into front and back halves, and return the two lists using the reference parameters. If the length is odd, the extra node should go in the front list. */

void FrontBackSplit(struct node* source, struct node** frontRef, struct node** backRef) {

/* Your code...*/

}

7. Write a RemoveDuplicates() function which takes a list sorted in increasing order and deletes any duplicate nodes from the list. Ideally, the list should only be traversed once.

/* Remove duplicates from a sorted list. */

void RemoveDuplicates(struct node* head) {

/* Your code...*/

}

8. This is a variant on Push(). Instead of creating a new node and pushing it onto the given list, MoveNode() takes two lists, removes the front node from the second list and pushes it onto the front of the first.

/* Take the node from the front of the source, and move it to the front of the dest.It is an error to call this with the source list empty. */

void MoveNode(struct node** destRef, struct node** sourceRef) {

/* Your code */

}

9. Write an iterative Reverse() function that reverses a list by rearranging all the .next pointers and the head pointer. Ideally, Reverse() should only need to make one pass of the list. The iterative solution is moderately complex.

Hints:

"Push" Reverse Hint

Iterate through the main list. Move each node to the front of the result list as you go. It's like doing a Push() operation with each node, except you use pointer re-arrangement on the existing node instead of allocating a new node. You can use MoveNode() to do most of the work, or hand code the pointer re-arrangement.

"3 Pointers" Hint

This strategy is not as good as the "Push" strategy. Instead of running a single "current" pointer down the list, run three pointers (front, middle, back) down the list in order: front is on one node, middle is just behind it, and back in turn is one behind middle. Once the code to run the three pointers down the list is clear and tested in a drawing, add code to reverse the .next pointer of the middle node during the iteration. Add code to take care of the empty list and to adjust the head pointer itself.

/* Reverse the given linked list by changing its .next pointers and its head pointer. Takes a pointer (reference) to the head pointer. */

void Reverse(struct node** headRef) {

/* your code... */
}
References:

1. Basic and a detailed explanation about linked lists

http://cslibrary.stanford.edu/103/LinkedListBasics.pdf

2. Linked List Problems

http://cslibrary.stanford.edu/105/LinkedListProblems.pdf
Please go through the above two links for more info.
