
 1

Algorithmic Cost and Complexity

There are two aspects of algorithmic performance:

• Time

- Instructions take time.
- How fast does the algorithm perform?
- What affects its runtime?

• Space
- Data structures take space
- What kind of data structures can be used?
- How does choice of data structure affect the
runtime?

 2

Measuring Performance

For example: A simple calculator :

Perform the four basic arithmetic functions:

- Addition
- Subtraction
- Multiplication
- Division

Prompt the user for:

- Operand 1
- Operand 2
- Operator

 3

Algorithm Calculator

double op1 // 1st operand
 op2 // 2nd operand
 answer ; // result
char operator ; // operator

// obtain operands and operator from user
printf(“Enter the first operand: ”);
scanf(“%lf”, &op1);
printf(“Enter the second operand: ”);
scanf(“%lf”, &op2);
printf(“Enter the operator: ”);
scanf(“%c”, &operator);

// perform the calculation
if (operator == ‘+’)
 answer = op1 + op2;

if (operator == ‘-’)
 answer = op1 - op2;

if (operator == ‘*’)
 answer = op1 * op2;

if (operator == ‘/’)
 answer = op1 / op2;

printf(“The answer is %f \n”, answer);

// end algorithm Calculator

 4

Analyzing Work Done

How many operations does Calculator do?
• read/write pairs (to obtain data)
• Testing conditionals
• Branching
• Performing operation
• Assigning variables

Note:
We will ignore the read/write instructions. They deal with
the world “outside the algorithm” and involve factors
beyond what we care about here.

Measures of Work
(ignoring read/write pairs)

• What’s the best case?

Addition - four tests (@ 2 each)
- one add
- one assignment
- total: 10

• What’s the worst case?
Division - four tests (@ 2 each)
- one divide
- one assignment
- total: 10

• What’s the average (expected) case?
- 10

 5

A Better Way?

// Perform the calculation
if (operator == ‘+’)
 answer = op1 + op2;
else if (operator == ‘-’)
 answer = op1 - op2;
else if (operator == ‘*’)
 answer = op1 * op2;
else if (operator == ‘/’)
 answer = op1 / op1;

printf(“The answer is %f\n”, answer);
// end of algorithm

Measures of Work
(ignoring read/write pairs)

• What’s the best case?

Addition - one test (@ 2 each)
- one add
- one assignment
- total: 4

• What’s the worst case?
Division - four tests (@ 2 each)
- one divide
- one assignment
- total: 10

• What’s the average (expected) case?
- (4+6+8+10)/4 = 7

 6

The Dangers of “Average” Work

In many circumstances, the assumption of random
distribution of input values is a faulty one.

What about a cash register?
• Addition operators most frequent (ring up an item)
• Subtraction less frequent (use a coupon)
• Multiplication rare (buy many of same item)
• Division very rare (???)

The average work in this situation would migrate
somewhat towards 4 from the mean of 7 suggested by
the assumption of random data.

Don’t assume random distribution without reason.

 7

Algorithm Analysis: Loops

Consider the following nested loops (LOOP1 and LOOP2)
intended to sum each of the rows in an NxN two dimensional
array, storing the row sums in a one-dimensional array rows and
the overall total in grandTotal.

LOOP 1:
grandTotal = 0;
for (k=0; k<n-1; ++k)

rows[k] = 0;
for (j = 0; j <n-1; ++j){

rows[k] = rows[k] + matrix[k][j];
grandTotal = grandTotal + matrix[k][j];

}
}

LOOP 2:
grandTotal =0;
for (k=0; k<n-1; ++k)

rows[k] = 0;
for (j = 0; j <n-1; ++j)

rows[k] = rows[k] + matrix[k][j];
grandTotal = grandTotal + rows[k];

}

• What is the number of addition operations? 2N 2 versus

N2 + N
• Assuming we’re working with a hypothetical computer

that requires 1 microsecond to perform an addition, for N
= 1000, loop 1 would take 2 sec., loop 2 would require
just over 1 second. (For N= 100,000 time would be
approx. 6 hrs and 3 hours respectively)

 8

Big-O Notation

­ It is a method of algorithm classification.

Definition: Suppose there exists a function f(n) defined on
nonnegative integers such that the number of operations
required by an algorithm for an input size n is less than or
equal to some constant c times f(n) (i.e. c*f(n)) for all but
finitely many n.

That is, the number of operations is at worst proportional to
f(n) for all large values of n.

Such an algorithm is said to be an O[f(n)] algorithm.

­ Loop 1 and Loop 2 are both in the same big-O category:

O(N2)

 9

Example 1:
Use big-O notation to analyze the time efficiency of the
following fragment of C code:

for(k = 1; k <= n/2; k++)
{
 .
 .
 for (j = 1; j <= n*n; j++)
 {
 .
 .
 }
}

Since these loops are nested, the efficiency is n3/2, or O(n3)
in big-O terms.

Thus, for two loops with O[f1(n)] and O[f2(n)] efficiencies,
the efficiency of the nesting of these two loops is
O[f1(n) * f2(n)].

 10

Example 2:

Use big-O notation to analyze the time efficiency of the
following fragment of C code:

for (k=1; k<=n/2; k++)
{
 .
 .
}
for (j = 1; j <= n*n; j++)
{
 .
 .
}

The number of operations executed by these loops is the
sum of the individual loop efficiencies. Hence, the
efficiency is n/2+n2, or O(n2) in big-O terms.

Thus, for two loops with O[f1(n)] and O[f2(n)] efficiencies,
the efficiency of the sequencing of these two loops is
O[fD(n)] where fD(n) is the dominant of the functions f1(n)
and f2(n).

 11

Example 3:

Use big-O notation to analyze the time efficiency of the
following fragment of C code:

k = n;
while (k > 1)
{

.

.
k = k/2;

}

Since the loop variable is cut in half each time through the
loop, the number of times the statements inside the loop
will be executed is log2n.

Thus, an algorithm that halves the data remaining to be
processed on each iteration of a loop will be an O(log2n)
algorithm.

 12

Classification of Algorithms

Algorithms whose efficiency is dominated by a logan term
are often called logarithmic algorithms . Because logan will
increase much more slowly than n itself, logarithmic
algorithms are generally very efficient.

Algorithms whose efficiency can be expressed in terms of a
polynomial of the form
 amnm + am-1nm-1 + ... + a2n2 + a1n + a0

are called polynomial algorithms . Such algorithms are
O(nm). For m=1, 2, or 3, they are called linear, quadratic or
cubic algorithms, respectively.

Algorithms with efficiency dominated by a term of the
form anare called exponential algorithms . They are of more
theoretical rather than practical interest because they cannot
reasonably run on typical computers for moderate values of
n.

 13

Complexity of Linear Search

In measuring performance, we are generally concerned
with how the amount of work varies with the data.
Consider, for example, the task of searching a list to see if
it contains a particular value.

• A useful search algorithm should be general.

• Work done varies with the size of the list

• What can we say about the work done for list of any length?

i = 0;

while (i < MAX && this_array[i] != target)
 i = i + 1;

if (i <MAX)
 printf (“Yes, target is there \n”);
else
 printf(“No, target isn’t there \n”);

 14

Order Notation

How much work to find the target in a list containing N
elements?
Note: we care here only about the growth rate of work.
Thus, we toss out all constant values .

Best Case - It’s the first value
 “order 1,” O(1)
Worst Case - It’s the last value, N
 “order N,” O(N)
Average - N/2 (if value is present)
 “order N,” O(N)

• Best Case work is constant; it does not grow with the

size of the list.
• Worst and Average Cases work is proportional to the

size of the list, N.

 15

Order Notation

O(1) or “Order One”:
• does not mean that it takes only one operation
• does mean that the work doesn’t change as N changes
• is a notation for “constant work”

O(N) or “Order N”:

• does not mean that it takes N operations
• does mean that the work changes in a way that is

proportional to N
• is a notation for “work grows at a linear rate”

 16

Improving on Linear Search

Can we do better?
Array of the Social Security Numbers of all students in this
class.
Index is the Social Security Number.

000 00 0001

000 00 0002

000 00 0003

. . .

999 99 9998

999 99 9999

Results is O(1), but wastes HUGE space

 17

Getting Realistic - Binary Search

• Assume a sorted list of 16 SSNs
• Search for one via binary search
• How much work is done now?

• Worst case:

16 / 2 Comparison #1
8 / 2 Comparison #2
4 / 2 Comparison #3
2 / 2 Comparison #4

• For 16 items, it takes 4 comparisons

• In general, it takes (log2N) searches
 (log216 = 4 because 24 = 16)

• Binary search is an O(logN) algorithm
 Since, it repeatedly cuts its remaining work in half, binary
search involves work that grows at a rate proportional to
the log of N.

 18

How much better is O(logN)?

 N O(logN)
 16 4
 64 6
 256 8
 1024 (1Kilo) 10
 16,384 14
 131,072 17
 262,144 18
 524,288 19
 1,048,576 (1Meg) 20
 1,073,741,824 (1Gig) 30

• As N gets large, the difference becomes great.

 19

Data Structures and Complexity

• Can we assume that data are:
- sorted and
- stored in an appropriate sized array?

#define MAX 30
int array[MAX];

• Still... we need to know what N is in advance to

declare an Array.

• Binary Search Tree (BST) can be very valuable, if

N is not predictable. A BST allows O(log N)
search performance if certain conditions are met:
The tree must be full and balanced.

 20

Data Structures and Complexity

 Traverse Search Insert

Linked List (unsorted) N N 1

Linked List (sorted) N N N

Array (unsorted) N N 1

Array(sorted) N log N N

Binary Tree N N log N

BST N log N log N

Insertion = cost to find location + cost of insertion.

 21

Bubblesort Revisited

Bubblesort works by comparing and swapping values
in a list

23 78 45 8 32 56

23 78 45 8 32 56

23 78 45 8 32 56

23 78 8 45 32 56

23 8 78 45 32 56

8 23 78 45 32 56

 22

Complexity of Bubblesort

How many comparisons will the inner loop do?
(N-1) + (N-2) + (N-3) + ... + 1

Average: N/2 for each “pass”

How many “passes” (outer loop) are there?
N – 1

Tossing constants:
• Each loop involves O(N) work
• Inner will be executed for each iteration of outer

So what is the complexity?

O(N) * O(N) = O(N2)

 23

void bubbleSort(int list[], int last)
{
 int current;

 for (current = 0; current < last; current ++)
 bubbleUp(list, current, last);
 return;
}

/* Move the lowest element in unsorted portion
 to the current element in the unsorted portion.
 Pre list must contain at least one element
 current: beginning of unsorted portion
 last: identifies end of the unsorted data
 Post array segment has been rearranged so that
 lowest element now at beginning of unsorted
 portion
*/
void bubbleUp(int list[],
 int current,
 int last)
{
 int walker;
 int temp;

 for (walker=last; walker > current; walker--)
 if(list[walker] < list[walker - 1]){
 temp = list[walker];
 list[walker] = list[walker – 1];
 list[walker-1] = temp;
 }

 return;
}

 24

 Comparison of N, logN and N2

N O(LogN) O(N2)
16 4 256
64 6 4K

256 8 64K
1,024 10 1M

16,384 14 256M
131,072 17 16G
262,144 18 6.87E+10
524,288 19 2.74E+11

1,048,576 20 1.09E+12
1,073,741,824 30 1.15E+18

 25

Complexity of MergeSort

Merge sort requires O(N log2N) comparisons.

The reasoning:
All the merge operations across any given level of the
trace diagram will require O(N) comparisons. There
are log2N levels. Hence, the overall efficiency is
O(N log2N).

In level 1: There is one merge operation. We’re

merging 2 lists with size N/2.
In level 2: There are two merge operations. We’re

merging 2 pairs of lists with size N/4.
.
.
In the last level (i.e. level log2N): There are N/2

merge operations. We’re merging N/2 pairs of lists
with size 1.

How much work is involved in each level?
• Each of the N numerical values is compared or

copied during each level
• Therefore, the work for each level is O (N)

Thus the total for MergeSort is:

O(log N) * O (N) = O(NlogN)

 26

 Example Problems

1. Algorithm A runs in O(N2) time, and for an input size of 4,
the algorithm runs in 10 milliseconds, how long can you
expect it to take to run on an input size of 16?

2. Algorithm A runs in O(log2N) time, and for an input size of

16, the algorithm runs in 28 milliseconds, how long can you
expect it to take to run on an input size of 64?

3. Algorithm A runs in O(N3) time. For an input size of 10, the

algorithm runs in 7 milliseconds. For another input size, the
algorithm takes 189 milliseconds. What was that input size?

4. For an O(Nk) algorithm, where k is a positive rational
number, a friend tells you that instance of size M took 16
seconds to run. You run an instance of size 4M and find that
it takes 256 seconds to run. What is the value of k?

5. Algorithm A runs in O(N3) time and Algorithm B solves the

same problem in O(N2) time. If algorithm A takes 5
milliseconds to complete for an input size of 10, and
algorithm B takes 20 milliseconds for an input size of 10,
what is the input size that you expect the two algorithms to
perform about the same?

6. For an O(N3) algorithm, an instance with N = 512 takes 56

milliseconds. If you used a different-sized data instance and
it took 7 milliseconds how large must that instance be?

 27

Answers

1. Algorithm A runs in O(N2) time, and for an input size of 4,
the algorithm runs in 10 milliseconds, how long can you
expect it to take to run on an input size of 16?

42 162
----- = ------- => x =160ms
10ms x

2. Algorithm A runs in O(log2N) time, and for an input size of
16, the algorithm runs in 28 milliseconds, how long can you
expect it to take to run on an input size of 64?

 log 16 log64
------------ = ------------ => x =42 ms
 28 ms x

3. Algorithm A runs in O(N3) time. For an input size of 10, the
algorithm runs in 7 milliseconds. For another input size, the
algorithm takes 189 milliseconds. What was that input size?

103 N3
----- = ------- => N = 30
7 ms 189

 28

4. For an O(Nk) algorithm, where k is a positive rational
number, a friend tells you that instance of size M took 16
seconds to run. You run an instance of size 4M and find that
it takes 256 seconds to run. What is the value of k?

 Mk (4M)k 256
------- = ---------- => 4k = -------- => k = 2
16 ms 256 16

5. Algorithm A runs in O(N3) time and Algorithm B solves the
same problem in O(N2) time. If algorithm A takes 5
milliseconds to complete for an input size of 10, and
algorithm B takes 20 milliseconds for an input size of 10,
what is the input size that you expect the two algorithms to
perform about the same?

For algorithm A: O(N3) means
 execution time <= c1 * N3

 for N = 10 execution time is 5ms = c1 * 103
 so , c1 = 5 / 103

 For algorithm B: O(N2) means

 execution time <= c2 * N3

 for N = 10 execution time is 20 ms = c2 * 102
 so , c2 = 20 / 102

 what is N for which
 c1 * N3 = c2 * N2

Substitute for c1 and c2:
 5 / 103 * N3 = 20 / 102 * N2
=> N = 40

 29

6. For an O(N3) algorithm, an instance with N = 512 takes 56

milliseconds. If you used a different-sized data instance and
it took 7 milliseconds how large must that instance be?

5123 N3
----- = ------- => N =256ms
56ms 7

