
 1

Binary Trees

• A tree is a data structure that is made of nodes and
pointers, much like a linked list. The difference
between them lies in how they are organized:
 In a linked list each node is connected to one

“successor” node (via next pointer), that is, it is
linear.

 In a tree, the nodes can have several next
pointers and thus are not linear.

• The top node in the tree is called the root and all

other nodes branch off from this one.

• Every node in the tree can have some number of

children. Each child node can in turn be the parent
node to its children and so on.

• A common example of a tree structure is the binary

tree.

Definition: A binary tree is a tree that is limited
such that each node has only two children.

 2

Examples:

• The following are NOT binary trees:

root
root

 3

Definitions:

• If n1 is the root of a binary tree and n2 is the root of its

left or right tree, then n1 is the parent of n2 and n2 is the
left or right child of n1.

• A node that has no children is called a leaf.
• The nodes are siblings if they are left and right children

of the same parent.
• The level of a node in a binary tree:

 The root of the tree has level 0
 The level of any other node in the tree is one more

than the level of its parent.

Exercise: Construct all possible 5 binary trees with 3
nodes.

root Level 0

Level 1

Level 2

Level 3

 4

Implementation

• A binary tree has a natural implementation in linked
storage. A separate pointer is used to point the tree (e.g.
root)

root = NULL; // empty tree

• Each node of a binary tree has both left and right

subtrees which can be reached with pointers:

struct tree_node{
 int data;
 struct tree_node *left_child;
 struct tree_node *right_child;
};

left_child data right_child

 5

Traversal of Binary Trees

Linked lists are traversed from first to last sequentially.
However, there is no such natural linear order for the nodes
of a tree. Different orderings are possible for traversing a
binary tree. Three of these traversal orderings are:

• Preorder
• Inorder
• Postorder

These names are chosen according to the step at which the
root node is visited.
− With preorder traversal the node is visited before its left

and right subtrees,
− With inorder traversal the root is visited between the

subtrees,
− With postorder traversal the root is visited after both

subtrees.

 6

Example :

Preorder: a b c d f g e

Inorder: b a f d g c e

Postorder: b f g d e c a

• Because of the recursively defined structure of a binary

tree, these traversal algorithms are inherently recursive.

• Recursive definition of a binary tree: A binary tree is

either
 Empty, or
 A node (called root) together with two binary trees

(called left subtree and the right subtree of the root)

• Tree traversal algorithms exploit this fact.

root
a

b c

d e

f g

 7

Preorder

void preorder(struct tree_node * p)
{ if (p !=NULL) {
 printf(“%d\n”, p->data);
 preorder(p->left_child);
 preorder(p->right_child);

}
}

Inorder

void inorder(struct tree_node *p)
{ if (p !=NULL) {
 inorder(p->left_child);
 printf(“%d\n”, p->data);
 inorder(p->right_child);

}
}

Postorder

void postorder(struct tree_node *p)
{ if (p !=NULL) {
 postorder(p->left_child);
 postorder(p->right_child);
 printf(“%d\n”, p->data);

}
}

 8

Finding the maximum value in a binary tree

int FindMax(struct tree_node *p) {

 int root_val, left, right, max;
 max = -1; // Assuming all values in the
 // are positive integers

 if (p!=NULL) {
 root_val = p -> data;
 left = FindMax(p ->left_child);
 right = FindMax(p->right_child);

 // Find the largest of the three values.
 if (left > right)
 max = left;
 else
 max = right;
 if (root_val > max)
 max = root_val;
 }
 return max;
}

 9

Adding up all values in a Binary Tree

int add(struct tree_node *p) {

 if (p == NULL)
 return 0;
 else
 return (p->data + add(p->left_child)+
 add(p->right_child));
}

 10

Binary Search Tree

Binary search tree is a binary tree that is either empty or in
which each node contains a data value that satisfies the
following:

a) all data values in the left subtree are smaller than the
data value in the root.

b) the data value in the root is smaller than all values in
its right subtree.

c) the left and right subtrees are also binary search tees.

This structure allows us to quickly search for a particular
value.

Example:

59

18 67

13 32 63 72

25

 11

Searching the Binary Search Tree

struct tree_node{
 int data;
 struct tree_node *left_child;
 struct tree_node *right_child;
};

int treeSeach(struct tree_node *p, int target)
{
 if (p==NULL)
 return 0;
 else
 if (p->data == target)
 return 1;
 else if (p->data > target)
 return(treeSearch(p->left_child));
 else
 return(treeSearch(p->right_child));
}

 12

Adding Nodes to a BST

In a BST, a new node will always be inserted at a NULL
pointer. We never have to rearrange existing nodes to make
room for a new one.

Example:
Add values 43, 65, 66 to the example tree given above.

 13

Deleting Nodes from a BST

a) Deleting a leaf node: Replace the link to the deleted
node by NULL.

b) Deleting a node with one empty subtree.

c) Deleting a node with both left and right subtrees. Any
deleted value that has two children must be replaced
by an existing value that is one of the following:

- The largest value in the deleted node’s left
subtree

- The smallest value in the deleted node’s right
subtree.

p

q

p

T1

T1

 14

p

q

p

T1 T1 T2

Immediate predecessor of q

T2

 15

Exercises:

1) Write a function that will count the leaves of a binary

tree.

int num_of_leaves(struct tree_node *p)
{
 if (p == NULL)

 return ___________;

 else /* check if it is a leaf */

 if (____________ && _______________)

 return 1;

 else

 return (num_of_leaves(___________ +

 num_of_leaves(______________);

}

 16

2) Write a function that will find the height of a binary tree.

(Height of an empty tree is zero).

int height(struct tree_node *p)
{
 int lefth, righth;

 if (p==NULL)

 return ________;

 else {

 lefth = height(___________);

 righth = height(___________);

 if (lefth > righth)

 return (___________);

 else

 return (___________);

 }

}

 17

3) Write a function that will interchange all left and right

subtrees in a binary tree.

void interchange(struct tree_node *p)
{
 struct tree_node *temp;

 if (p != NULL) {

 interchange (___________);

 interchange(____________);

 temp = ________;

 p->left = ________;

 p->right = ________;

 }

}

