
 1

Data Types in C

We often want computers to process large amounts of
data, so we need ways to manipulate lists and other
groupings of large amounts of data. To satisfy these
needs, we require more than just the few basic data
types that are built-into the language. We require
constructs and methods that allow us to not only
manipulate data but also create data abstractions.

Three constructors that allow the definition of
complex structured types:

• pointers
• arrays
• records

 2

Pointers

A pointer is simply the internal machine address of a
value inside the computer’s memory.

int a;
int *p;

// p is a pointer to int .

a = 7;
p = &a;

 a p

We can reach the contents of the memory cell
addressed by p:

printf(“%d\n”, *p);

7

 3

Fundamental pointer operations

1. Assigning the address of a declared variable:
 int a, *this, *that;
 this = &a;

2. Assigning a value to a variable to which a pointer points.

*this = 4;

assigns 4 to the int variable to which the pointer variable
refers.

3. Making one pointer variable refer to another:
that = this;

4. Creating a new variable. Given:

int *this;
int * that;

then
this = malloc(sizeof(int));

allocates a new memory space for the pointer and makes
the pointer variable refer to it. e.g.:

this
4

this that

4

this
?

 4

Addressing and Dereferencing

int a, b;
int *p, *q;

a=42; b=163;
p = &a;
q = &b;

printf(“*p = %d, *q = %d\n”, *p, *q);

*p = 17;
printf(“a = %d\n”, a);

p = q;

*p = 2 * *p – a;
printf(“b = %d\n”, b);

 5

p = &a;
printf(“Enter an integer: “);
scanf(“%d”, p);

*q = *p;

double x, y, *p;

p= &x;
y = *p;

equivalent to

y = *&x;

or

y =x;

 6

Passing parameters by reference

void SetToZero (int var)
{
 var = 0;
}
You would make the following call:

SetToZero(x);

This function has no effect whatever.
Instead, pass a pointer:

void SetToZero (int *ip)
{
 *ip = 0;
}

You would make the following call:

SetToZero(&x);

This is referred to as call-by-reference.

 7

Arrays

Ø An array is a sequence of data items that are of the same
type that can be indexed and that are stored contiguously.

Ø Arrays are a data type that is used to represent a large

number of homogenous values.

Ø The elements of an array are accessed by the use of

subscripts (also called index)

Ø Arrays of all types are possible, including arrays of

arrays.

An array of 5 integers:

int grade[5];

0

1

2

3

4

grade[0] = 45;

grade[1] = 80;

grade[2] = 32;

grade[3] = 100;

grade[4] = 75;

Ø Indexing of array
elements starts at 0.

45

80

32

100

75

 8

Array declaration:

 type identifier[size of the array];

Ø A typical array declaration allocates memory starting

from a base address. The array name is in effect a pointer
constant to this base address.

Ø To store the elements of the array the compiler assigns

an appropriate amount of memory, starting from the base
address. (i.e. identifier)

Example:

 int x[10];
 double y[50];

Ø The identifier (e.g. x) is a constant which points to the

base address of the array (it can be thought as a constant
pointer).

Ø The elements are reached by using the identifier + index.

i.e. number of elements: must be a
positive constant integral expre ssion

 9

Initializing an Array

int y[5] = {1,3,5,7,9};

double x[10] = {1.1, 2.2, 3.3}; //rest is zero

int m[]={2,4,6,8,10}; //equivalent to m[5]

Subscripting

Suppose,

int i, a[size];

Then we can write:

a[i]

More generally:

a[expr]

Ø The value of an index must lie in the range 0 to size-1

 10

Effective and allocated sizes

• The number of array elements usually depends on the

user’s data.
• The size of the array specified in the declaration is called

the allocated size .
• The number of elements actively in use is called the

effective size .

Example:

#define MaxJudges 100

int scores[MaxJudges];

To keep track of the effective size, you would need to
declare an additional variable as follows:

int nJudges;

 11

Passing arrays as parameters

In a function definition, a formal parameter that is declared
as an array is actually a pointer.

When an array is being passed, its base address is passed
call-by-value. The array elements themselves are not
copied.

Example:

int Mean(double a[], int n)
{
 int j;
 double sum = 0;

 for (j=0; j < n ; j++)
 sum = sum + a[j];

 return (sum/n);
}

Note: a[] is a notational convenience. In fact

int a[] ≡ int *a

Calling the function:

int total, x[100];

total = Mean(x, 100);
total = Mean(x, 88);
total = Mean(&x[5], 50);

 12

Two-dimensional Arrays

The general syntax for declaring a two-dimensional array:

<type> <id_name>[row_size][col_size];

Example:

int table[5][10];

table[0][0] = 3; //like an integer variable

table[1] à one-dimensional array of 10 integers

Printing the contents of a 2-D Array:

int vals[5][5];
int i,j;

 for (i=0; i<5; i++) {
 for (j=0; j<5; j++)
 printf("%d ", vals[i][j]);
 printf("\n");
 }

 13

Pointers and Arrays

• Arrays are implemented as pointers.
• The operations on pointers make sense if you consider

them in relation to an array.

Consider:
double list[3];
double *p;

&list[1] : is the address of the second element

&list[i] : the address of list[i] which is calculated by

 the formula
base address of the array + i * 8

Pointer arithmetic

• If we have :

p = &list[0]; // Or: p = list;
then
p + k is defined to be &list[k]

• If

p = &list[1];
then
p – 1 corresponds to &list[0]
p + 1 corresponds to &list[2]

 14

Pointer Arithmetic (cont.)

• The arithmetic operations *, /, and % make no sense for

pointers and cannot be used with pointer operands.

• The uses of + and – with pointers are limited. In C, you

can add or subtract an integer from a pointer, but you
cannot, for example add two pointers.

• The only other arithmetic operation defined for pointers

is subtracting one pointer from another. The expression

p1 – p2

where both p1 and p2 are pointers, is defined to return
the number of array elements between the current values
of p2 and p1 .

• Incrementing and decrementing operators:

*p++ is equivalent to *(p++)

 15

Example: Illustrates the relationship between pointers
and arrays.

int SumIntegerArray(int *ip, int n)
{
 int i, sum;

 sum = 0;
 for (i=0; i < n; i++) {
 sum += *ip++;
 }
 return sum;
}

Assume
 int sum, list[5];
are declared in the main function. We can make the
following function call:

sum = SumIntegerArray(list, 5);

 16

 Records: struct Construct

struct party{

int house_number;
int time_starts;
int time_ends;

};

struct party halloween_party,
 new_years_party;

Rather than a collection of 6 variables, we have:
• 2 variables with 3 fields each.
• both are identical in structure

• We may have unlimited number of identical variables by
declaring a single structure.

• Changes to declaration cascade to all variables of that
structure:

struct party{

int house_number;
int time_starts;
int time_ends;
char police_came;

};

 17

Another Example

Student Record

struct student {
 int ID;
 char name[20];
 int test[3];
 double average;
 char grade;
};

Variable declaration:

struct student s1, s2, s3,
 class[100],
 *sptr;

ID:

Name :

Test:

Average: Grade:

 18

Accessing Structures

Two operators are used to access members of structures:
1. the structure member operator, also called the dot

operator (.) and,
2. the structure pointer operator, also called the arrow

opeartor (->).

Dot operator
s1.test[1] = 90;
s1.average = (s1.test[0]+ s1.test[1] +
 s1.test[2])/3.0;
s1.grade = ‘A’;
for(j=0; j<20; j++)
 printf(“%c”,s1.name[j]);

Arrow Operator
sptr = &s2;
sptr->grade = ‘B’;

sptr->grade is equivalent to (*sptr).grade

Parenthesis are necessary because the operators -> and .
have highest precedence.

*sptr.grade is equivalent to *(sptr.grade)
&s2->grade is equivalent to &(s2->grade)

 19

Creating New Data Types

• The atomic types and arrays are “given” to us.

• We can use all these constructors to create new

“user-defined” data types.

• Once we create a new data type, we can then

declare variables to be of the new type, just as we
can declare variables to be of the “built in” types.

• Creating variables of a new data type is a two-step

process:
1. Define the new type
2. Declare variables of that type

• Creating the new data type does not provide any

variables, only the template by which variables
may then be declared.

 20

The use of typedef

C provides typedef facility so that an identifier can be
associated with a specific type.

Example 1:

typedef int color;

color red, blue;

Example 2:

typedef struct{

int Day;
int Month;
int Year;

 } Date;

Date birthday, *d;

 21

Example 3:

typedef int Vector[20];
typedef Vector Matrix[20];

Matrix m1;
Vector v1;

Example 4:

typedef int *pointerType;

pointerType p;
int x;

p = &x;
*p = x;
x = *p + 1;

Example 5:

typedef char String[20];

String First, Last;

