Data TypesinC Pointers

We often want computers to process large amounts of A pointer issimply thei n’ternal machine address of a
data, so we need ways to manipulate lists and other value inside the computer’s memory.

groupings of large amounts of data. To satisfy these _ _

needs, we require more than just the few basic data : 2: f‘l’o,

types that are built-into the language. We require
constructs and methods that allow us to not only

manipulate data but also create data abstractions. /I'pisapointer toi nt .

a=71;
C p = &a
Three constructors that allow the definition of
complex structured types: a P
- pointers 7)
- arrays

- records

We can reach the contents of the memory cell
addressed by p:

printf(“%\n”, *p);

Fundamental pointer operations Addressing and Der eferencing
1. Assigning the address of a declared variable:

int a, *this, *that; |t & b*
. "] Int *p, *q
this = &a;
a=42; b=163
2. Assigning a value to a variable to which a pointer points. p = &a;
*this = 4, q = &b;

[[

assigns4 to thei nt variable to which the pointer variable

refers.
3. Making one pointer variable refer to another:
that = this; printf(“*p = %, *q = %@\n", *p, *q);
that
*p = 17,
4 printf(“a = %\n", a);
4. Creating a new variable. Given: p=gq;
int *this;
int * that;
then
this = malloc(sizeof(int));
dlo@&anay memory spapefor .thepointer and makes xp =2 % *p — a
the pointer variable refer to it. e.g.: printf(“b = %d\n”, b);

% 3~

Passing parameter s by reference

p = &a;
22;2;‘;5;5[“8:)) an integer: *); voi d Set ToZero (int var)
P {
var = 0;
}

Y ou would make the following call:

="k Set ToZer o(x) ;

This function has no effect whatever.
Instead, pass a pointer:

voi d Set ToZero (int *ip)

double x, vy, *p; {

o P *ip = 0;
p= &x; }
y = *p;

_ Y ou would make the following call:
equi valent to

y = *&x; Set ToZer o(&X) ;
or Thisisreferred to as call-by-reference.

y =X,

Arrays

» An array is a sequence of data items that are of the same
type that can be indexed and that are stored contiguoudly.

> Arrays are a data type that is used to represent a large
number of homogenous values.

» The elements of an array are accessed by the use of
subscripts (also called index)

» Arrays of al types are possible, including arrays of
arrays.

An array of 5integers:
i nt grade[5];

grade[0] = 45;

0 45
grade[1] = 80;
1 CY grade[2] = 32;
2 7 grade[3] = 100;
rade[4] = 75;
3 100 gradef 4]
4 VS » Indexing of array
elements starts at 0.

Array declaration:

type identifier[size of the array];

I

i.e. number of elements: must be a
positive constant integral expressior

» A typical aray declaration alocates memory darting
from a base address. The array name is in effect a pointer
constant to this base address.

» To store the elements of the array the compiler assigns
an appropriate amount of memory, starting from the base
address. (i.e. identifier)

Example:
int x[10];
doubl e y[50];

» The identifier (e.g. x) is a constant which points to the
base address of the array (it can be thought as a constant
pointer).

» The dements are reached by using the identifier + index.

Initializing an Array

int y[5] = {1,3,5,7,9};
double x[10] = {1.1, 2.2, 3.3}; //rest is zero

int nM{]1={2,4,6,8,10}; //equivalent to nf5]

Subscripting
Suppose,
int i, a[size];

Then we can write:
a[i]

More generdly:
al expr]

» The vaue of anindex must liein therange 0 to si ze-1

Effective and allocated sizes

. The number of array dements usualy depends on the
user’s data.

. The size of the array specified in the declaration is called
the allocated size.

. The number of elements actively in use is called the
effective size.

Example:
#defi ne MaxJudges 100
i nt scores[MaxJudges];

To keep track of the effective size, you would need to
declare an additiond variable as follows:

i nt nJudges;

10

Passing arrays as parameters

In afunction definition, aformal parameter that is declared
as an array is actualy a pointer.

When an array is being passed, its base address is passed
cdl-by-value. The array elements themselves are not
copied.

Example:
int Mean(double a[], int n)
{
int j;
doubl e sum = 0;
for (j=0; j <n; j++)
sum = sum + a[j];
return (sumn);
}

Note: &[] isanotational convenience. In fact
int a[] © int *a

Calling the function:

int total, x[100];

total = Mean(x, 100);
total = Mean(x, 88);
total = Mean(&x[5], 50);

11

Two-dimensional Arrays

The general syntax for declaring atwo-dimensional array:
<type> <id_name>[row_siz€][col_size];
Example:
int table[5][10];
table[0][0] = 3; //1ike an integer variable

table[1] - one-dinensional array of 10 integers
Printing the contents of a 2-D Array:

int vals[5][5];
int i,j;
for (i=0; i<5; i++) {
for (j=0; j<5; j++)
printf("% ", vals[i][j]);
printf("\n");

12

Pointersand Arrays

- Arrays are implemented as pointers.

- The operations on pointers make sense if you consider
them in relation to an array.

Consider:

double list[3];

doubl e *p;

& ist[1l] : istheaddressof the second element

& ist[i] : theaddressof list]i] which is caculated by
the formula
base address of thearray + i * 8

Pointer arithmetic

. If we have:
p =& ist[O0]; [l O: p =1list;
then
p + k isdefinedtobe &l ist[Kk]
If
p =& ist[1];
then
p-1 correspondsto &l i st[0]

p + 1 correspondsto &l i st 2]

13

Pointer Arithmetic (cont.)

. The arithmetic operations *, /, and % make no sense for

pointers and cannot be used with pointer operands.

- Theuses of + and — with pointers are limited. In C, you

can add or subtract an integer from a pointer, but you
cannot, for example add two pointers.

. The only other arithmetic operation defined for pointers

is subtracting one pointer from another. The expression
pl — p2

whereboth p1 and p2 are pointers, is defined to return
the number of array dements between the current values
of p2 and p1l.

- Incrementing and decrementing operators.

*p++ isequivaent to *(p+t)

14

Example: Illustrates the relationship between pointers
and arrays.

int Sum ntegerArray(int *ip, int n)
{

int i, sum
sum = O;
for (i=0; i < n; i++) {
sum += *ip++;
}
return sum
}
Assume

int sum |ist[5];
are declared in the mai n function. We can make the
following function call:

sum = Sum ntegerArray(list, 5);

15

Records: st r uct Construct

struct party{
i nt house_nunber;
int tinme_starts;
int tinme_ends;

b

struct party hall oween_party,
new years_party;

Rather than a collection of 6 variables, we have:
« 2 variables with 3 fidds each.
« both are identica in structure

- We may have unlimited number of identica variables by
declaring a single structure.

- Changes to declaration cascade to al variables of that
structure:

struct party{
i nt house_nunber
int time_starts;
int tinme_ends;
char police_cane;

16

Another Example
Student Record

Test:

Name:

Grade;

Aver age:

struct student {

int 1D
char nane[20];
int test[3];

doubl e aver age;
char grade;

b
Variable declaration:

struct student sl1, s2, s3,
cl ass[100],
*sptr;

17

Accessing Structures

Two operators are used to access members of structures:
1. the structure member operator, also called the dot
operator (.) and,
2. the structure pointer operator, aso caled the arrow
opeartor (- >).

Dot operator

sl.test[1] 90;

sl.average = (sl.test[0]+ sl.test[1] +

sl.test[2])/3.0;
sl.grade = 'A’;
for(j=0; j<20; |++)
printf(“%”,sl.name[j]);

Arrow Operator
sptr = &s2;
sptr->grade = ‘B ;
sptr->grade isequivdentto (*sptr). grade

Parenthesis are necessary because the operators - > and .
have highest precedence.

*sptr.grade isequivdentto *(sptr. grade)
&s2->gr ade isequivaent to & s2- >gr ade)

18

Creating New Data Types

- The atomic types and arrays are “given” to us.

- We can use all these constructors to create new

“user-defined” data types.

- Once we create a new data type, we can then
declare variables to be of the new type, just aswe
can declare variables to be of the “built in” types.

- Creating variables of a new datatypeisatwo-step
process:

1. Define the new type

2. Declare variables of that type

- Creating the new data type does not provide any
variables, only the template by which variables
may then be declared.

19

Theuseof t ypedef

C provides t ypedef facility so that an identifier can be
associated with a specific type.

Example 1.

typedef int color;

col or red, blue;

Example 2:

typedef struct{

i nt Day;

i nt Month;

int Year;
} Date;

Dat e birthday, *d;

20

Example 3:

typedef int Vector[20];
typedef Vector Matrix[20];

Matrix mi;

Vector vli;

Example 4:

typedef int *pointerType;

poi nt er Type p;
int Xx;

p = &X;
*p=X;

X =*p + 1;
Example5:

typedef char String[20];

String First, Last;

21

