
 1

Overview of C

 2

Structure of a C Program

/* File: powertab.c
 * ----------------
 * This program generates a table comparing values
 * of the functions n^2 and 2^n.
 */

#include <stdio.h>

/*
 * Constants
 * ---------
 * LowerLimit – Starting value for the table
 * UpperLimit – Final value for the table
 */

#define LowerLimit 0
#define UpperLimit 12

/* Function prototypes */

int RaiseIntPower(int n, int k);

/* Main program */

int main()
{
 int n;

 printf(“ | 2 | N\n”);
 printf(“ N | N | 2\n”);
 printf(“----+-----+------\n”);

 for (n = LowerLimit; n <= UpperLimit; n++){
 printf(“ %2d | %3d | %4d\n”, n,
 RaiseIntPower(n, 2),
 RaiseIntPower(2, n));
 }
}

 3

/*
 * Function: RaiseIntPower
 * This function returns n to the kth power.
 */

int RaiseIntPower(int n, int k)
{
 int i, result;

 result = 1;

 for (i = 0; i < k; i++){
 result *= n;
 }
 return (result);
}

 4

Variables, values and types

A variable can be thought of as a named box, or cell, in which one
or more data values are stored and may be changed by the
algorithm.

The act of creating a variable is called declaring the variable. For
every variable that is declared it must be explicitly typed. In other
words, each variable has an associated data type.

Examples:
int age;
int test_score;
float average;
double result = 0.0;

An identifier is simply the algorithmic terminology for a name that
we make -up to “identify” the variable. Every variable must be
given a unique identifier so that there will be no ambiguity as to
which piece of data we are referencing.

Rules for Variable Identifiers (in C)

• A sequence of letters, digits, and the special character _.
• A letter or underscore must be the 1

s t
 character of an identifier.

• C is case-sensitive: Apple and apple are two different
identifiers.

 5

Data Types

A data type is defined by two properties:
• a domain, which is a set of values that belong to that type
• a set of operations, which defines the behavior of that type

e.g.
Type int includes all integers (… -2, -1, 0, 1, 2, …) up to
the limits established by the hardware of the computer.
The set of operations includes the standard arithmetic
operations like addition, multiplication.

C includes several fundamental types that are defined as part of
the language. These types are called atomic types.

Atomic types can be grouped into 3 categories: integer, floating
point and character.

• Integer Types:
- short: 2 bytes
- int: 4 bytes
- long: 4 bytes
- unsigned: 4 bytes

• Floating-point Types:
- float: 4 bytes
- double : 8 bytes
- long double: 8 bytes
- signed/unsigned

The range of values for each type depends on the particular
computer’s hardware.

 6

• Characters:
- char: 1 byte

The domain of type char is the set of symbols that can be
displayed on the screen or typed on the keyboard: the
letters, digits, punctuation symbols, spacebar, Return key,
etc.
In addition to the standard characters, C allows you to write
special characters in a two-character form beginning with a
backslash (\)

Examples:

char grade;
char first, mid, last;

int age, year;
double tax_rate;

grade = ‘A’;
age = 20;
mid = ‘\0’;

 7

Expressions

For example:
(-b + sqrt(b * b – 4 * a * c)) / (2 * a)

Arithmetic Operators
Basic operations include the four basic operations and the
modulus operator:

• Addition (+)
• Subtraction (-)
• Multiplication (*)
• Division (/)
• Modulus (%)

x % y produces the remainder when x is divided by y.
e.g.

11 % 5 = 1
20 % 3 = 2

ð Operator Precedence:
 x = 1 + 2 * 3; (What is the value of x?)

x = 1 + (2*3); x is 7?
OR
x= (1+2) * 3; x is 9?

ð Associativity: (left to right)
10 + 3 + 7 => 20
10 – 3 + 7 => 14
15 / 5 * 2 => 6

 8

Assignment Operator

• The expression can simply be a constant or a variable:
int x, y;
x = 5;
y = x;
x = 6;

• The expression can be an arithmetic expression:
x = y + 1;
y = x * 2;
x = x + 10;

• Embedded assignments:

z = (x = 6) + (y = 7);
n1 = n2 = n3 = 0;

• Shorthand assignments:

x += y;
z -= x;
y /= 10;

variable = expression

 9

Boolean Operators
C defines three classes of operators that manipulate
Boolean data:

• relational operators
− Greater than >
− Greater than or equal >=
− Less than or equal <=
− Less than <
− Equal to ==
− Not equal to !=

• logical operators
− AND : &&

(TRUE if both operands are TRUE)
((5 > 4) && (4 > 7)) is FALSE

− OR : ||

(TRUE if either or both operands are TRUE)
((5 >4) || (4 > 7)) is TRUE

− NOT: !

(TRUE if the following operand is FALSE)
! (4 > 7) is TRUE

• ?: operator

(condition) ? expr1 : expr2;
max = (x>y) ? x : y;

 10

Input and Output Operators

I/O Operators: allow us to communicate with the “outside
world,” i.e, the real world beyond the algorithm

scanf: obtains (reads) an input value

each read operation does 2 things:
1. obtains next value from “outside”
2. stores it in the specified variable

e.g.
scanf(“%d”, &num);

printf: sends out an output value
e.g.

printf(“%d”, num);
printf(“Hello world!”);

- scanf and printf may take any number of arguments of the

existing types.

General format:

scanf(format control string, input var list);
printf(format control string, output var list);

- number of conversion characters = number of arguments.

Conversion characters for different types:
 %c char
 %d int
 %f float, double (for printf)
 %lf double (for scanf)
 %Lf long double (for scanf)

 11

Statements

Simple Statement

expression;

The expression can be a function call, an assignment, or a
variable followed by the ++ or – operator.

Blocks

A block is a collection of statements enclosed in curly
braces:
 {
 statement_1
 statement_ 2
 …
 statement_n

}

 12

The if statement

It comes in two forms:

if (condition)
 statement

if (condition)
 statement
else
 statement

An example program:

main()
{ int n;

 printf(“This program labels a number as “
 “even or odd.\n”);
 printf(“Enter a number: “);
 n = GetInteger();
 if (n%2) == 0)
 printf(“That number is even.\n”);
 else
 printf(“That number is odd.\n”);
}

 13

Nested if Statements

if (condition1)
 if (condition 2)
 statement 1
 else
 statement 2
else
 statement 3

condition 1

condition 2 statement 3

statement 2 statement 1

false

false

true

true

 14

The else-if Statement

if (condition1)
 statement
else if (condition2)
 statement
else if (condition3)
 statement
else
 statement

 15

If Statement Exercise

Write a C program that reads in the dimensions of a room (length x
width) and also reads in the size of a desk (length x width) and
determines if the desk can fit in the room with each of it’s sides
parallel to a wall in the room. Assume the user enters positive
numbers for each of the four dimensions.

#include <stdio.h>
int main() {

 int roomlen, roomwid;
 int desklen, deskwid;

 printf("Enter the length and width of the “
 “room.\n");
 scanf("%d%d",&roomlen, &roomwid);
 printf("Enter the length and width of the “
 “desk.\n");
 scanf("%d%d",&desklen, &deskwid);

 if ((deskwid <= roomwid) && (desklen <= roomlen))
 print(“The desk will fit in the room.\n”);
 else
 print(“The desk will not fit in the room.\n”);

 return 0;

}

Will this work in every situation? Why or why not?

 16

#include <stdio.h>
int main()
{
 int roomlen, roomwid;
 int desklen, deskwid;
 int temp;

 // Read in room and desk dimensions.
 printf("Enter the length and width of the room.\n");
 scanf("%d%d",&roomlen, &roomwid);
 printf("Enter the length and width of the desk.\n");
 scanf("%d%d",&desklen, &deskwid);

 // Check both ways of putting the desk in the room
 // and output the result.
 if ((deskwid <= roomwid) && (desklen <= roomlen))
 print(“The desk will fit in the room.\n”);
 else if ((deskwid<=roomlen) && (desklen<=roomwid))
 print(“The desk will fit in the room.\n”);
 else
 print(“The desk will not fit in the room.\n”);

 return 0;

}

 17

The switch statement
General Form:

switch (e) {
 case c1 :
 statements
 break;
 case c2 :
 statements
 break;

 more case clauses

 default:
 statements
 break;
}

Example:
int MonthDays (int month, int year)
{
 switch (month){
 case 9:
 case 4:
 case 6:
 case 11: return 30;
 case 2:
 return (IsLeapYear(year))? 29: 28);
 default :
 return 31;
 }
}

 18

Iterative Statements

The while Statement

General form:

while (conditional expression){
 statements
}

Example:

/* This function computes the sum of the
 * digits in an integer.
 */
int DigitSum (int n)
{
 int sum;

 sum = 0;

 while (n > 0) {
 sum += n % 10;
 n /= 10;
 }

 return (sum);
}

 19

ð Many programming problems do not fit easily into the standard
while loop structure. The most common example of such
problems are those that read in data from the user until some
special value, or sentinel, is entered to signal the end of the
input.

One way to solve this problem is to use the break statement
that has the effect of immediately terminating the innermost
enclosing loop:

while (TRUE) {

Prompt the user and read in a value.
if (value == sentinel) break;
Process the data value.

}

Example:

/* This program add a list of numbers */
#define sentinel 0

main()
{
 int value, total =0;
 printf(“This program add a list of numbers.\n”);
 printf(“Use %d to signal the end of list.\n”,
 sentinel);
 while (TRUE) {
 printf(“ ? “);
 value = GetInteger();
 if (value == sentinel) break;
 total += value;
 }
 printf(“The total is %d.\n”, total);
}

 20

Example: Menu driven program set-up

int main() {

 int choice;

 while (TRUE) {

 Print out the menu.

 scanf("%d",&choice);

 if (choice == 1) {
 Execut e this option
 }
 else if (choice == 2) {
 Execute this option
 }
 ...
 else if (choice == quitting choice)
 break;
 else {
 That's not a valid menu choice!
 }
 }
 return 0;
}

 21

The for Statement

General form:

for (initialization; loopContinuationTest; increment) {
 statements
}

which is equivalent to the while statement:

initialization;
while (loopContinuationTest) {
 statements
 increment;
}

Example: Finding the sum 1+3+…+99:

int main() {

int val ;
int sum = 0;

for (val = 1; val < 100; val = val+2) {
 sum = sum + val;
}

printf("1+3+5+...+99=%d\n",sum);
return 0;

}

 22

The do/while Statement

General Form:
do {
 statements
} while (condition);

Example 1:

counter = 10;
do {

printf("%2d\n", counter);
counter -= 1;

} while (counter >= 0);
printf(“Liftoff!\n”);

Example 2:
Write a loop to enforce the user to enter an acceptable
answer of Yes or No.

do {
 printf(“Do you want to continue? (Y/N)”);
 scanf(“%c”,&ans);
} while (ans != ‘Y’ && ans != ‘y’ &&

 ans != ‘N’ && ans != ‘n’);

 23

Nested Control Structures

Flow of control statements such as if, for, while etc. can be
nested within themselves and within one another.

When the body of a loop includes another loop construct
this is called a nested loop. In a nested loop structure the
inner loop is executed from the beginning every time the
body of the outer loop is executed.

Example 1:

value = 0;
for (i=1; i<=10; i=i+1)
 for (j=1; j<=5; j=j+1)
 value = value + 1;

The outer loop is executed ____ times. The inner loop is
executed ____ times every time the outer loop is executed.
(i.e. ____ times in total)

Example 2:

value = 0;
for (i=1; i<=10; i=i+1)
 for (j=1; j<=i; j=j+1)
 value = value + 1;

Similar to the one above. How many times the inner loop is
executed?

 24

Functions

Functions can be categorized by their return types:

• Function returning a value – A function that performs
some subtask that requires returning some value to the
calling function.

• Void function – A function that performs some

subtask that does not require a single value to be
returned to the calling function.

 25

Function definitions and prototypes

A function definition has the following syntactic form:

result-type name (parameter-list)
{
 body of the function
}

Before you use a function in a C program, it is a good
practice to declare it by specifying its prototype. A
function’s prototype gives us all the information needed to
know how to use the function and no more.
In C, the general form for a function prototype is:

result-type name (parameter-list);

For example,

 double pow(double base, double exponent);

No information about how the function performs its task.
Nonetheless, the reader has enough information to invoke
or use the function.

 26

C Library Functions

Library: ctype.h

int isalpha(int c);
int isdigit(int c);
int isupper(int c);
int islower(int c);
int tolower(int c);
int toupper(int c);

Library math.h

double cos(double x);
double acos(double x);
double cosh(double x);
double exp(double x);
double ceil(double x);
double floor(double x);
double fabs(double x);
double pow(double x, double y);
double sqrt(double x);

Library stdlib.h

int rand(void);
void srand(unsigned seed);

 27

General Structure of a C Program

• A program is made up of one or more functions; one of
them must be main().

• Each function must have been defined before it is called. The best way to
organize modules in a program is to list the prototypes of all functions
before the main function. Their definition can be placed after the main
function.

preprocessor directives

function prototypes

int main () {
.
.
.
}

function-1
function-2
.
.
.
function-n

 28

Returning results from functions

• Functions can return values of any type.

Example:

int IsLeapYear(int year)
{
 return (((year % 4 == 0) && (year % 100 != 0))
 || (year % 400 == 0));
}

This function may be called as:

if (IsLeapYear(2003))
 printf(“29 days in February.\n”);
else
 printf(“28 days in February.\n”);

 29

void Functions

A void function does not return a value to the calling
algorithm. We don’t need to include a return statement in a
void function. After the last statement in the void function
is executed, the control of execution is returned to the
calling point in the program.

Format of a void function

void function_name (formal parameters) {
.
.
.
}

Example:

void displayResults(int result1, int result2,
 int result3)
{
 printf(“The first result is %d\n”, result1);
 printf(“The second result is %d\n”, result2);
 printf(“The third result is %d\n”, result3);
}

Calling the function displayResults:

displayResults(r1, r2, r3);

 30

• Another common example of a void function is one that
prints out a menu:

void menu() {

 printf("Please choose one of the following.\n");

}

You can call this function as follows:

menu();

• Another situation where void functions might be useful

is in a menu driven program where the menu choices are
completely unrelated:

int main()
{
 int choice;

 while (1) {
 menu();
 scanf("%d", &choice);
 if (choice == 1)
 function1();
 else if (choice == 2)
 function2();
 else if (choice == 3)
 function3();
 else if (choice == 4)
 break; //quit option is selected
 else
 printf("Invalid option. Please enter your”
 “choice again.\n");
 }
}

 31

Calling a Function

• When a program encounters a function, the function is
called or invoked.

• The control of execution is transferred to the body of
the function.

• The function has its own memory space.
• After the function does its work, program control is

returned to the calling function, where program
execution continues.

• When a return statement is executed, program control is
immediately passed back to the calling environment

• If an expression follows the keyword return, the value of
the expression is returned to the calling environment as
well.

Main

Function 1

Function 2

 32

Value and Reference Parameters

There are two ways to pass parameters to functions in many
programming languages:

1. Call-by-value
2. Call-by-reference

• When an argument is passed call-by-value, a copy of the

argument’s value is made and passed to the called
function. Changes to the copy do not affect the original
variable’s value in the caller.

• When an argument passed call-by reference, the caller
actually allows the called function to modify the original
variable’s value.

Ø In C, all calls are call-by-value. However it is possible to

simulate call by reference by using pointers. (Address
operators (&) and indirection operators (*))

