Structureof a C Program

/* File: powertab.c
*

* This program generates a table conparing val ues
* of the functions n*"2 and 27n.
*/

#i ncl ude <stdio. h>

/

*

OVGI‘VlQN Of C * LowerLimit — Starting value for the table
* UpperLimt — Final value for the table
#define LowerLinmit O
#define UpperLimt 12
/* Function prototypes */
int RaiselntPower(int n, int k);

/* Main program */

int main()
int n;
printf(" | 2 | Nn");
printf(* N| N | 2\n");
printf(“----4----- oo \n");

for (n = LowerLimt; n <= UpperLimt; n++){
printf(* 9%2d | 98d | %d\n”, n,
Rai sel nt Power (n, 2),
Rai sel nt Power (2, n));

/

*

*

* This function returns n to the kth power.

*/

Functi on: Rai sel nt Power

int RaiselntPower(int n, int k)

{

int i, result;
result = 1;

for (i =0; i <
result *= n;
}

return (result);

k;

i ++){

Variables, values and types

A variable can be thought of asanamed box, or cell, in which one
or more data values are stored and may be changed by the
algorithm.

The act of creating avariable is called declaring the variable. For

every variable that is declared it must be explicitly typed. In other
words, each variable has an associated data type.

Examples:
int age;
int test_score;
fl oat average;
doubl e result = 0.0;

An identifier issimply the algorithmic terminology for a name that

we make-up to “identify” the variable. Every variable must be
given a uniqueidentifier so that there will be no ambiguity asto

which piece of datawe are referencing.

Rules for Variable I dentifiers (in C)

A sequence of letters, digits, and the special character _.
A letter or underscore must be the 1°* character of an identifier.

C iscase-sensitive: Apple and apple are two different
identifiers.

Data Types

A data type is defined by two properties:
- adomain, which is a set of values that belong to that type
. aset of operations, which defines the behavior of that type
e.g.
Typei nt includesall integers(... -2,-1,0,1, 2, ...) upto
the limits established by the hardware of the computer.
The set of operations includes the standard arithmetic
operdtions like addition, multiplication.

C includes severa fundamentd types that are defined as part of
the language. These types are called atomic types.

Atomic types can be grouped into 3 categories. integer, floating
point and character.

- Integer Types:
- short: 2 bytes
- int; 4 bytes
- long: 4 bytes

- unsigned: 4 bytes

- Floating-point Types:
- float: 4 bytes
- double: 8 bytes
- long double: 8 bytes
- signed/unsigned

The range of values for each type depends on the particular
computer’s hardware.

- Characters:
- char: 1 byte

The domain of type char isthe set of symbols that can be
digdlayed on the screen or typed on the keyboard: the
letters, digits, punctuation symbols, spacebar, Return key,
etc.

In addition to the standard characters, C allows you to write
specia characters in a two-character form beginning with a
backslash (\)

Examples:
char grade;
char first, md, |ast;

i nt age, year;
doubl e tax_rate;

grade = ‘A’ ;
age = 20;
md = "'\0";

Expressions

For example:
(-b+sgrt(b*b—-4*a*c)/(2* a)

Arithmetic Operators
Basic operations include the four basic operations and te
modulus operator:

- Addition (+)

- Subtraction (-)

- Multiplication (*)

- Division (/)

- Modulus (%)

X % y produces the remainder when x isdivided by y.
eg.

11 %5 =1
20 %3 = 2
= Operator Precedence
x =1+ 2* 3; (Whatisthevalue of x?)
X =1+ (2*3); Xis7?
OR
x= (1+2) * 3; X is9?

= Associativity: (left to right)
10 + 3 +7 => 20
10 - 3 +7 => 14
15/ 5 * 2 => 6

. Theexpressi

Assignment Operator

variable = expression

- The expression can simply be a constant or avariable:

int x, vy;

n be an arithmetic expression:

e
+
*
+

e i
><><‘<% o X Ul

X< X o X< X

gy

Embedded assignments:
z =(x=6) +(y=7),;
nl = n2 = n3 = 0;

- Shorthand assignments:

X +=y;
zZ -= X;
y /= 10;

Boolean Operators
C defines three classes of operators that manipulate
Bodean data:

. relational operators

- Greater than >
- Greater than or equal >=
- Lessthan or equal <=
- Lessthan <
- Equd to ==
- Not equal to I=

- logical operators
- AND : &&
(TRUE if both operands are TRUE)
((5>4) && (4>7))isFALSE

- OR |
(TRUE if either or both operands are TRUE)
((5>4) || (4>7)isTRUE

- NOT: !
(TRUE if the following operand is FALSE)
1'(4>7)isTRUE

. 7. operator
(condition) ? exprl: expr2;
max = (x>y) ? X . vV,

Input and Output Operators

I/O Operators: alow us to communicate with the “outside
world,” i.e, the real world beyond the algorithm

scanf: obtains (reads) an input vaue
each read operation does 2 things:
1. obtains next value from “outside”
2. storesit in the specified variable
eg.
scanf (“%”, &num ;

printf: sends out an output vaue

eg.
printf(“%”, num;
printf(“Hello world!”);

- scanf and printf may take any number of arguments of the
existing types.

General format:

scanf(format control string, input var list);
printf(format control string, output var list);

- number of conversion characters = number of arguments.

Conversion characters for different types:

%c char

%d int

%f float, double (for printf)
%lf double (for scanf)

%L f long double (for scanf)

10

Statements

Simple Statement
expression;

The expression can be a function cal, an assgnment, or a
variable followed by the ++ or — operator.

Blocks

A block is a collection of statements enclosed in curly
braces:

{
statement_1
statement_ 2
statement_n
}

11

Thei f statement

It comesin two forms:

i f (condition)
statement

i f (condition)
statement

el se
statement

An example program:

mai n()

{

int n;

printf(“This program | abels a nunber
“even or odd.\n");

printf(“Enter a numnber:
n = Getlnteger();
if (n2) == 0)
printf(“That nunber
el se
printf(“That nunber

“);

is even.\n");

is odd.\n");

as

12

Nested | f Statements
v

statement 2 statement]

;?:
i f (conditionl)
i f (condition 2)
statement 1

el se
statement 2

el se
statement 3

13

The else-if Statement

i f (conditionl)
statement

el se if (condition2)
statement

el se if (condition3)

statement
el se

statement

14

If Statement Exercise

Write aC program that readsin the dimensions of aroom (length x
width) and also reads in the size of a desk (length x width) and
determines if the desk can fit in the room with each of it’s sides
parallel to a wall in the room. Assume the user enters positive
numbers for each of the four dimensions.

#i ncl ude <stdi o. h>
int main() {

int roomen, roomm d;
int desklen, deskw d;

printf ("Enter the length and width of the *“
“room\n");

scanf (" %d%d", & oom en, &roomwi d);

printf ("Enter the length and width of the *
“desk.\' n");

scanf (" %%d", &deskl en, &deskwi d) ;

if ((deskwid <= roomwi d) && (desklen <= roonlen))
print(“The desk will fit in the room\n");

el se
print(“The desk will not fit in the room\n");
return O;

Will thiswork in every situation? Why or why not?

15

#include <stdio. h>
int main()

{

int room en, roomu d;
i nt deskl en, deskwi d;
int tenp;

/1 Read in room and desk di mensi ons.

printf("Enter the length and width of the room\n");
scanf (" %%d", & oom en, &roomwi d);

printf("Enter the length and width of the desk.\n");
scanf ("%d%d" , &deskl en, &deskwi d);

/'l Check both ways of putting the desk in the room

/1 and output the result.

if ((deskwid <= roommi d) && (desklen <= room en))
print(“The desk will fit in the room\n”);

else if ((deskw d<=room en) && (deskl en<=roomwi d))
print(“The desk will fit in the room\n”);

el se
print(“The desk will not fit in the room\n");

return O;

16

Thesw t ch statement
General Form:

switch (e) {
case ¢; :
statements
br eak;
case ¢
statements
br eak;

mor e case clauses

defaul t:
statements
br eak;
}
Example:

int MonthDays (int nonth, int year)
{
switch (rmonth){
case 9:
case 4.
case 6.
case 11: return 30;
case 2.
return (lsLeapYear(year))? 29: 28);
defaul t
return 31;

17

|terative Statements

Thewhi | e Statement

Generd form:

whi | e (conditional expression) {
statements
}

Example:

/* This function conputes the sum of the
* digits in an integer.

*/

int DigitSum (int n)

{

int sum

sum = 0;

while (n > 0) {
sum += n % 10;

n /= 10;
}

return (sum;

18

= Many programming problems do not fit easily into the standard

while loop structure. The most common example of such

problems are those that read in data from the user until some
special value, or sentinel, is entered to signal the end of the
input.

One way to solve this problem is to use the br eak statement
that has the effect of immediately terminating the innermost
enclosing loop:

while (TRUE) {
Prompt the user and read in a value.
if (value == sentinel) break;
Process the data value.

}

Example:

/* This programadd a |list of nunbers */
#define sentinel 0O

mai n()

{

int value, total =0;
printf(“This programadd a list of nunbers.\n");
printf(“Use %d to signal the end of list.\n",
sentinel);
while (TRUE) {
printf(* 2?2 “);
value = Getlnteger();
if (value == sentinel) break;
total += val ue;

}
printf(“The total is %l.\n”, total);

19

Example: Menu driven program set-up

i nt

mai n() {

i nt choice;

while (TRUE) {

Print out the menu.
scanf (" %", &hoi ce) ;

if (choice == 1) {
Execut e this option

else if (choice == 2) {
Execute this option

el se if (choi ce == quitting choice)

br eak;
el se {
That's not a valid menu choice!
}
}
return O;

}

20

Thef or Statement

Generd form:

for (linitialization; loopContinuationTest; increment) {
statements
}

which is equivalent to the whi | e statement:

initialization;

whi | e (loopContinuationTest) {
statements
increment;

}

Example: Finding the sum 1+3+...+99:

int main() {

int val
int sum = O;

for (val = 1; val < 100; val = val +2) {
sum = sum + val;

}

printf("1+3+5+...+99=%\ n", sum ;

return O,

21

Thedo/ whi | e Statement

General Form:
do {

statements

} while (condition);

Example 1:
counter =
do {

printf("%d\n",

10;

counter -= 1,
} while (counter >= 0);
printf(“Liftoffl\n”);

Example 2:

Write a loop to enforce the user to enter an acceptable

answer of Yes or No.

do {

counter);

printf(“Do you want to continue? (Y/N)");
scanf (“%”, &ans) ;

} while (ans !'="'Y

ans ! =

‘N && ans ! =

&& ans !'= "y’
lni),

&&

22

Nested Control Structures

Flow of control statements such as if, for, while etc. can be
nested within themsalves and within one another.

When the body of a loop includes another loop construct
this is called a nested loop. In a nested loop structure the
inner loop is executed from the beginning every time the
body of the outer loop is executed.

Example 1.
val ue = 0;
for (i=1; i<=10; i=i+1)

for (j=1; j<=5; j=j+1)
val ue = value + 1;

The outer logp is executed times. The inner loop is
executed times every time the outer loop is executed.
(i.e. times in total)
Example 2:
val ue = 0;
for (i=1; i<=10; i=i+1)

for (j=1; j<=i; j=j+1)

val ue = value + 1;

Similar to the one above. How many times the inner loop is
executed?

23

Functions
Functions can be categorized by their return types:
- Function returning a vaue — A function that performs

some subtask that requires returning some value to the
cdling function.

- Void function — A function that performs some
subtask that does not require a single value to be
returned to the calling function.

24

Function definitions and prototypes

A function definition has the following syntactic form:

result-type name (parameter-list)

{
}

Before you use a function in a C program, it is a good
practice to declare it by specifying its prototype. A
function’s prototype gives us al the information needed to
know how to use the function and no more.

In C, the general form for afunction prototype is:

body of the function

result-type name (parameter-list);
For example,

doubl e pow(doubl e base, doubl e exponent);

No information about how the function performs its task.
Nonetheless, the reader has enough information to invoke
or use the function.

25

C Library Functions

Library: ctypeh

int isal pha(int c);
int isdigit(int c);
int isupper(int c);
int islower(int c);
int tolower(int c);
int toupper(int c);

Library math.h

doubl e cos(double x);

doubl e acos(doubl e x);

doubl e cosh(doubl e x);

doubl e exp(doubl e x);

doubl e ceil (doubl e x);

doubl e fl oor (doubl e x);

doubl e fabs(double x);

doubl e pow(doubl e x, double y);
doubl e sqrt(doubl e x);

Library stdlib.h

int rand(void);
voi d srand(unsi gned seed);

26

General Structureof a C Program

A program is made p of one or more functions; one of
them must be mai n().

Each function must have been defined beforeit iscalled. The best way to
organize modulesin aprogramisto list the prototypes of all functions
before the main function. Their definition can be placed after the main
function.

preprocessor directives

function prototypes
int min () {
}

function-1
function-2

function-n

27

Returning results from functions

Functions can return values of any type.

Example:

int |IsLeapYear(int year)

return (((year %4 == 0) && (year % 100 != 0))

|| (year % 400 == 0));

This function may be caled as.

if (lsLeapYear(2003))

printf(“29 days in February.\n");
el se

printf(“28 days in February.\n");

28

voi d Functions

A void function does not return a value to the caling
algorithm. We don't need to include a return statement in a
void function. After the last statement in the void function
is executed, the control of execution is returned to the
cdling point in the program.

Format of avoi d function

voi d function_name (formal parameters) {

}
Example:

voi d di splayResults(int resultl, int result2,
int result3)

{
printf(“The first result is %\n”, resultl);
printf(“The second result is %\n”, result?2);
printf(“The third result is %\n”, result3);
}

Cadling the function di spl ayResul t s:

di spl ayResults(rl, r2, r3);

29

Another common example of avoid function is one that
prints out a menu:

void menu() {

printf("Please choose one of the followi ng.\n");

}

You can cdl this function as follows:

menu() ;

Another situation where voi d functions might be useful
isin a menu driven program where the menu choices are
completely unrelated:

int main()
{

int choice

while (1) {
menu() ;
scanf ("%l", &choice);
if (choice == 1)
functionl();

else if (choice == 2)
function2();
else if (choice == 3)
function3();
else if (choice == 4)
br eak; //quit option is selected
el se

printf("Invalid option. Please enter your”
“choi ce again.\n");

30

Calling a Function Value and Reference Parameters

+ When a program encounters a function, the function is There are two ways to pass parameters to functions in many

cdled or invoked. .

- The control of execution is transferred to the body of proj%]rgtl;)l;g\/l;ﬁ%u@es
thefunctlgn. _ 2. Call-by-reference

- The function has its own memory space.

- After the function doe_s its Work, program contral is . When an argument is passed call-by-value, a copy of the
returngd to Fhe cadling function, where program argument’'s value is made and passed to the called
execution continues. function. Changes to the copy do not affect the original

variable's value in the cdler.
Main - When an argument passed call-by reference, the caller

actualy dlows the called function to modify the origina
variable' svalue.

» In C, dl cdls are call-by-value. However it is possible to
_ smulate call by reference by using pointers. (Address
Function 2 operators (&) and indirection operators (*))

- When a return statement is executed, program control is
immediately passed back to the caling environment
If an expression follows the keyword return, the value of

the expression is returned to the calling environment as
well.

31 32

