
 1

Arrays and Searching

• A very common programming process.

• Sequential Search : the simplest method. Begin

search at one end of the array and scan down it
until the desired value is found or the other end is
reached.

• Algorithm:

int find(int big_array[], int size, int value)
{
 int found=0,
 loc = 0;

 while(!found && loc < size){
 if (big_array[loc] == value)
 found = 1;
 else
 loc = loc + 1;

 if (found)
 return loc;
 else
 return –1;
}

 2

Sorted Arrays

• What happens if the array is sorted?
ðwe can terminate search as soon as a value which

is greater than or equal to the target value is
found.

• Algorithm:

while (!found && loc < size){
 if (big_array[loc] >= value)
 found = 1;
 else
 loc = loc + 1;
}

if (found && big_array[loc] != value)
 found = 0;

 3

Binary Search

• Sequential search is easy to implement and
efficient for short arrays, but it is a disaster for long
arrays. (e.g. trying to find “Smith” in a telephone
directory with sequential search)

• To find an item in a long list, there are far more

efficient methods.

ð Binary search

• Array must be sorted.
• Compare the value with the one in the center of the

list and then restrict attention to only the first or
second half of the array depending on whether the
value being searched comes before or after the
central element’s value.

first mid last

• at each step we reduce the length of the array to be
searched by half.

• (e.g. array size = 1 million ⇒ 20 comparisons
needed to locate any item)

 4

Algorithm
• Several slightly different algorithms for binary search

can be written.
• Termination condition: either the target value is found or

no items left in the array to be searched. Initially low
index = 0 and high index = Size – 1. The loop should
terminate when high < low, provided that we have not
terminated the loop earlier by finding the target.

In C:

int binary Search(int L[], int size, int value)
{
 int high, low, mid; //mid will be the index of
 int found = 0; //target when it’s found.

 low = 0;
 high = size –1;

 while ((low <= high) && !found) {
 mid = (high + low)/2;
 if (L[mid] == value)
 found = 1;
 else if (value < L[mid])
 high = mid – 1;// reduce to the lower
 // half of the array
 else
 low = mid + 1; //reduce to the top half
 //of the array
 }
 return found;
}

 5

• When high == low, the loop iterates one more time.
• Trace the algorithm for:

 0 1 2 3 4 5 6 7 8 9

 3 5 7 9 10 13 15 17 19 25

− value = 19 ⇒ 3 comparisons.
− value = 14 ⇒ 4 comparisons.

 6

Recursive Binary Search Function

int Find(int numbers[], int val,
 int low, int high)
{
 int mid;

 mid = (low + high)/2;

 if (low > high)
 return 0;
 else if (numbers[mid] == val)
 return 1;
 else if (val < numbers[mid])
 return Find(numbers, val, low, mid-1);
 else
 return Find(numbers, val, mid+1, high);
}

• We not need to pass in the length of the array to this

function for it to work properly.

 7

Merging Two Sorted Arrays

The problem: Given two sorted arrays, combine the values
in each of the arrays into a larger array so that the larger
array contains all values in a sorted way.

The idea:

1. For each of the given arrays, keep track of the
index of the smallest value that hasn’t been
placed in the larger array.

2. Compare these two smallest values. Place the
smaller in the next available location in the large
array.

3. Adjust the index for the appropriate array and
also for the large array.

4. Continue this process (steps 1 -3) until all values
in one of the shorter arrays are placed in the
large array.

5. Copy the remaining values in the other short
array to the remaining locations of the large
array.

 8

Illustration of merging two sorted arrays:

Array 1

27 31 59 80 85 92

Array 2
13 17 35 60

Sorted Big Array

 9

Implementation

void merge(int a[], int b[], int c[],
 int sizeA, int sizeB)
{
 int index1 = 0, // index for array a
 index2 = 0, // index for array b
 index3 = 0; // index for array c

 while (index1 < sizeA && index2 < sizeB)
 {
 if (a[index1] < b[index2]) {
 c[index3] = a[index1];
 index1 ++;
 }
 else {
 c[index3] = b[index2];
 index2 ++;
 }
 index3++;
 }

 while (index1 < sizeA){
 c[index3] = a[index1];
 index1++;
 index3++;
 }

 while (index2 < sizeB){
 c[index3] = b[index2];
 index2++;
 index3++;
 }
}

