
COP 3502

UNIVERSITY OF CENTRAL FLORIDA (UCF)

Department of Computer Science

COP 3502 Computer Science I

Common Midterm Examination

Total points: 100 Total Time: 2 hours

COP 3502 Sections

(Circle your section)

Instructor

1 Arup Guha

2 Awrad Mohammed Ali

3 Tanvir Ahmed

4 Mahfuzur Rahaman

Last Name in Upper Case Letter: ________________________

First Name in Upper Case Letter:_________________________

UCF ID: __________________________
Did you circle your section above? ____________________

Instructions:

1. This is a closed-book and closed-neighbor exam. No notes, textbooks, or

outside assistance are permitted.

2. Calculators, smartwatches, and electronic devices (phones, tablets,

laptops, earbuds, etc.) are strictly prohibited.

3. No scratch paper is allowed. However, you may use the margins or back

side of the exam paper for rough work.

4. Write clearly and legibly. If the instructor cannot read your handwriting, the

answer may not receive credit.

5. Manage your time wisely

COP 3502

Part A - Dynamic Memory Allocation [Total: (2 + 2) + (12 + 4) = 20 pts]

Solution

1. a) Write a single line of code that allocates an array of type int storing 500 values, each set to 0.

Answer:

int* array = calloc(500, sizeof(int));

Grading: 1 pt LHS, 1 pt RHS, has to be completely correct to get 2 pts.

b) Assume scores is a pointer to a dynamically allocated array of int with size N.

The following line of code attempts to double the size of the array:

scores = realloc(scores, N * 2 * sizeof(int));

However, if realloc fails, this code will cause a memory leak. Rewrite the code using a few

additional lines so that: i) If realloc fails, the original memory is properly freed, and NULL will

be assigned to scores and print a message “failed”. ii)If it succeeds, scores points to the new,

resized array and prints “success”

Answer:

int* tmp = realloc(scores, N*2*sizeof(int));

if (tmp == NULL) {

 printf("failed\n");

 free(scores);

 scores = NULL;

}

else {

 scores = tmp;

 printf("success\n");

}

Grading: 1 pt realloc in other var, 1 pt rest

COP 3502

2. This problem relies on the following struct definition. A book can have multiple authors.

typedef struct Book {

 char title[50]; // Book's title

 char **authors; // For author names. There can be multiple authors

 float price; // price

 int nAuth; //number of authors

 } Book;

a) Write a function that takes the title of a book, an array of author names, and the length n of the

authNames array. The function dynamically allocates ONE Book and stores the data passed to the

function into the dynamically allocated book. During this process, you may need to perform

multiple dynamic memory allocations. Finally, the function returns the dynamically allocated

book. The function must allocate the exact space needed to store the strings when possible.

 Book* createBook(char *title, char authNames[][50], float price, int n){

 Book* res = malloc(sizeof(Book)); // 2 pts

 strcpy(res->title, title); // 1 pts

 res->price = price; // 1 pt

 res->authors = calloc(n, sizeof(char*)); // 2 pts

 res->nAuth = n; // 1 pt

 for (int i=0; i<n; i++) { // 1 pt

 int sz = strlen(authNames[i]);

 res->authors[i] = malloc((sz+1)*sizeof(char)); // 2 pts

 strcpy(res->authors[i], authNames[i]); // 1 pt

 }

 return res; // 1 pt

}

b) Complete the function that takes a pointer to the book created by the createBook() function

and frees memory without creating any memory leak.

 void freeBook(Book *book) {

 for(int i=0; i< book->nAuth; i++) {

 free(book->authors[i]; // 2 pts

 }

 free(book->authors); // 1 pt

 free(book); // 1 pt

}

COP 3502

Part B - Recursion [Total: (3 + 5 + 12 = 20 pts)] Solution

1. Consider the following recursive function:
int f(int n) {

 if (n <=1)

 return 1;

 if (n == 2)

 return 3;

 return 2 * f(n - 1) + f(n - 2) - 1;

}

What value will be returned by f(5)? 33

Grading: 3 pts correct answer, 2 pts if one arithmetic error or if answer they give is 14 or 79 or

within 3 of the correct answer, Give 0 pts otherwise

2. Consider the following node struct for a singly linked list.
typedef struct node { int data; struct node* next; } node;

Write a recursive function byeList(node *head), that receives the head of a singly

linked list and frees all the nodes of the linked list without creating any segmentation fault or

memory leak.
void byeList(node *head) {

 if (head == NULL) return; // 2 pts

 byeList(head->next); // 2 pts

 free(head); // 1 pt

}

3. Complete the code on the next page so that it prints out all permutations of the integers in

between 0 and 9 where there is at least one pair of adjacent values that have a difference of +1

or -1. For example, during the execution of the code, the permutation [0, 3, 2, 9, 7, 5, 1, 8, 4,

6] should be printed because 3 and 2 are adjacent in the permutation and have a difference of

3 – 2 = 1. (If the 2 and 3 are swapped, that different permutation should also be printed since

2 – 3 = -1.) (Note: This code will take long to run! So, don't try running this at home).

Please fill in the body of the code in the makePerm() function and the entire check() function.

COP 3502

#include <stdlib.h> //in case you want to use abs function for absolute value

#define SIZE 10

void makePerm(int* perm, int* used, int k, int n);

void print(int* perm, int n);

int check(int* perm, int n);

int main() {

 int perm[SIZE];

 int used[SIZE];

 for (int i=0; i<SIZE; i++)

 used[i] = 0;

 makePerm(perm, used, 0, SIZE);

 return 0;

}

void makePerm(int* perm, int* used, int k, int n) {

 if (k == n) {

 if (check(perm,n))

 print(perm, n);

 return;

 }

/*** FILL IN FOR LOOP ***/

 for (int i=0; i<n; i++) {

 if (used[i]) continue; // 2 pts

 used[i] = 1; // 1 pt

 perm[k] = i; // 1 pts

 makePerm(perm, used, k+1, n); // 1 pt

 used[i] = 0; // 1 pt
 }

}

void print(int* perm, int n) {

 for (int i=0; i<n; i++)

 printf("%d ", perm[i]);

 printf("\n");

}

// This function should be written iteratively.

int check(int* perm, int n) {

 for (int i=0; i<n-1; i++) // 1 pt

 if (abs(perm[i]-perm[i+1])==1) // 3 pts

 return 1; // 1 pt

 return 0; // 1 pt

}

COP 3502

Part C – Linked Lists [Total: 12 + 6 = 18 pts] Solution

1. Consider a typical linked list node struct
 typedef struct node { int data; struct node* next; } node;

Write a function that takes the head of a linked list, an integer x, and a position p (p>1). The

function inserts x into the position p in the linked list. If the position p is more than the total number

of nodes, the function inserts the item at the end of the linked list. Also, note that the first item in

the linked list is at position 1, and you can assume that the list has at least one item. Finally, the

function should return the total number of nodes (including the new one) in the linked list.

Example: if there is a linked list: 10 ->20 ->30-> 7 -> 4-> 8, x = 9, and p =3, the function

should result in the following linked list: 10 ->20 -> 9 ->30-> 7 -> 4-> 8. The function should

also return 7.

int insertAt(node* head, int x, int p) { //Write this function

 node* prev = head;

 for (int i=0; i<p-2 && prev->next != NULL; i++)

 prev=prev->next;

 node* tmp = malloc(sizeof(node));

 tmp->data = x;

 tmp->next = prev->next;

 prev->next = tmp;

 int res = 0;

 while (head != NULL) {

 res++;

 head = head->next;

 }

 return res;

}

Grading: Iterating to the point of insertion without going too far – 4 pts

 Allocating Node and filling it – 2 pts

 Patching Node in – 2 pts

 Counting Nodes – 3 pts

 Returning Count – 1 pt

COP 3502

2. Consider passing a pointer to a linked list storing the values 𝑝𝑡𝑟 → 3 → 2 → 6 → 1 → 8 → 4

to the function shown below. After the function is completed, show the contents of the list in

order. Please list the items as shown above, with an arrow representing the next node for each

struct.

typedef struct node {

 int data;

 struct node* next;

} node;

void whatDoesItDo(node* front) {

 while (front != NULL) {

 if (!(front->data%2 == 1)) {

 node* tmp = malloc(sizeof(node));

 tmp->data = front->data + 5;

 tmp->next = front->next;

 front->next = tmp;

 front = tmp;

 }

 front = front->next;

 }

}

Answer:

ptr → 3 → 2 → 7 → 6 → 11 → 1 → 8 → 13 → 4 → 9

Grading: 2 pts for keeping all original values in their same relative orderr

 1 pt each for each of the 4 insertions being the correct number

COP 3502

Part D – Stacks and Queues [Total: 8 + 4 + 3 + 5= 20 pts] Solution

1. Convert the following infix expression to postfix using a stack. Show the contents of the stack at

the indicated points (A, B, and C) in the infix expression. It means when you reach point A, show

the content of the stack in the first stack out of the following 3 stacks. Similarly, do this for points

B and C.

 +

 (

 /

 * ((

 + – –

 (((

 / – –

Stack Status at A Stack Status at B Stack Status at C

Final postfix (Note that you may not need to fill out all the boxes):

8 4 2 2 * + / 9 8 2 2 + / - - 5 +

Grading: 1 pt for each stack, 5 pts for the expression, give partial on the expression

as you see fit (generally speaking take off 1 pt per error cap at 5)

2. The following function performs deQueue operation on a linked list-based

implementation of a queue.
int deQueue(struct queue* qPtr) {

 if(isEmpty(qPtr))

 return -1;

 int saveVal = qPtr->front->data;

 struct node* temp = qPtr->front;

 qPtr->front = qPtr->front->next;

 free(temp);

 if(isEmpty(qPtr)) {

 qPtr->back = NULL;

 }

 return saveVal;
}

COP 3502

The above function calls the isEmpty() function twice. In what initial state of the queue will the

second isEmpty() call return true while performing a dequeue operation, and why do we need to

check this condition again? Answer in one to three sentences:

If the queue pointed to by qPtr has 1 element in it when deQueue is called, the second isEmpty

call will return 1 (true). We need to check it because both front and back need to be set to NULL

in this special case.

Grading: 2 pts for 1 element answer, 2 pts for why to recheck

3. Explain why a queue implemented via a traditional linked list storing only a pointer to the front

of the queue is inefficient? Which operation(s) are less efficient than they could be?

Enqueue takes O(n) time for a queue storing n items because with no direct access to the back of

the queue, one has to traverse through the entire list of n elements to find the last node, where the

next pointer has to be changed.

Grading: 1 pt enqueue, 2 pts explanation why it's slow.

4. Consider the following struct for an array-based circular queue implementation. Answer the following

struct queue {

 int* elements;

 int front;

 int noe;

 int queueSize;

};

noe= total items in the

queue.

queuesize= total

capacity of the

elements array.

Complete the dequeue function. If the queue is empty, return -1. Otherwise, write the

necessary code to complete the regular dequeue operation and adjust the queue properties.
int dequeue(struct queue* qPtr){

 if (qPtr->noe == 0) return -1;

 int retval = qPtr->elements[qPtr->front];

 qPtr->front = (qPtr->front + 1)%qPtr->queueSize;

 qPtr->noe--;

 return retval;

}

Grading: 1 pt return -1 when empty

 1 pt storing retval

 1 pt updating front correctly

 1 pt updating number of elements

 1 pt returning

 Just take off 1 pt total if qPtr-> missing 2 or less times

 Take off 2 pts total if qPtr-> missing a lot

COP 3502

Part E – Algorithm Analysis [Total: 4 + 8 + 9 + 1 = 22 pts] Solution

1. A brute force algorithm has a run time of O(4n). For an input size n = 10, the algorithm takes

100 milliseconds. How long would it be expected for the algorithm to take to complete running

on an input size of 12? Please give your answer in seconds. (1 second = 1000 milliseconds)

Let T(n) be the run time of the algorithm for an input of size n. Using the given information, we

have T(n) = c(4n), for some constant c. Plug in information about n = 10:

T(10) = c(410) = 100 ms → 𝑐 =
100 𝑚𝑠

410
. Now, we must solve for T(12):

𝑇(12) = 𝑐(412) =
100 𝑚𝑠

410
× 412 = (100 𝑚𝑠) × 42 = 1600𝑚𝑠 = 1.6 𝑠𝑒𝑐

Grading: 2 pts solve for c, 1 pt get to 1600 ms, 1 to convert to 1.6 seconds

2. What is the BigO run-time for the following functions? Just write the BigO. You don’t

have to explain them.
int f1(int A[],int B[],int n) {

 int i, j, sum = 0;

 for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 if (A[i] == B[j])

 sum++;

 return sum;

}

int f3(int m) {

 int i,j;

 for (i=1; i<=m; i++) {

 for (j=1; j<=m; j++)

 if (j == 2)

 break;

 }

 return j;

}

Run-time: O(n2)

Run-time: O(m)

void analyzeBigOh(int n) {

 int sum = 0;

 int i = 1;

 while (i < n) {

 sum += i;

 i *= 2;

 }

 for (int j = 0; j < n; j++) {

 for (int k = 0; k < n; k++) {

 sum += j + k;

 }

 }

 printf("Sum is: %d\n", sum);

}

Assume a binary search function

binSearch() is already implemented.

//in the parameter, n is the length of array

b[], the array on which the search occurs.

void match(int a[], int m, int b[], int n)

{

 for (int i = 0; i < m; i++) {

 if(a[i] == -1) break;

 //searching for a[i] in b array

 if(binSearch(a[i], b, n) ==1)

 printf("%d ", a[i]) ;

 }

}

Run-time: O(n2) Run-time: O(mlgn)

Grading: 2 pts for each one, no partial credit on any part, each part is right or wrong.

COP 3502

3. Multiple choice (Circle the correct answer) /fill in the blanks:

a) In binary search, if searchKey < Array[mid], which operation would you perform?

i) high = mid+1 ii) return Array[mid] iii) low = mid + 1 iv) low = mid – 1 v) high = mid-1

b) What would be the Big-O notation for f(n) = 4n2 + 500
n

2
 ∗ log n

 i) O(n2) (ii) O(n3+
n

2
 ∗ log n) (iii) O(n log n) (iv) O(

n

2
 ∗ log n) (v) O(log n)

What is the Big-O run-time for the following operations?

c) Getting the largest number from a sorted array of size n: i)Best case: O(1) ii) Worst case:O(1)

d) Printing the elements of a stack with top number of elements:

 i)Best case:O(top) ii) Worst case:O(top)

e) Linear search in an array of size M: i)Best case: O(1) ii) Worst case: O(M)

f) Inserting an item to the end of a linked

 list of n nodes without a tail pointer: i)Best case: O(n) ii) Worst case: O(n)

g) Push operation in a stack with n items (No reallocation occurs if the stack becomes full):

 i)Best case:O(1) ii) Worst case: O(1)

h) Worst case runtime of calculating factorial of n: O(n)

i) Number of disk movement in tower of Hanoi in n disks: 2n – 1

Grading: 1 pt for each part, have to get the whole part to get the point.

4. For Fun The UCF Football team is about to start an away game against the Cincinnati

Bearcats. In what city is the team currently?

 Cincinnati (Grading: Give to All)

