t\/(;’/" QAGDL

Summer 2021 Data Structures Exam, Part B : l& / 27 / 25
Name:

UCFID:

NID:

1) (5 pts) ALG (Binary Trees)

Draw a single binary search tree that meets all the following conditions:
e The tree contains 7 nodes.
e The tree’s pre-order traversal is the same as its in-order traversal.

e The tree does not contain any duplicate values.

If it is not possible to draw such a tree, say so and explain why not.

Page 2 of 4

Fall 2021 Data Structures Exam, Part B

1) (10 pts) ALG (Binary Trees)

Consider a function that takes in a pointer to a binary tree node and returns a pointer to a binary tree node

defined below:

typedef struct bintreenode {
int data;
struct bintreenode* left;
struct bintreenode* right;
} btreenode;

btreenode* somefunction (btreenode* root) {
if (root == NULL) return NULL;
?somefunction(root—>left);
somefunction (root->right);
btreenode* tmp = root->left;

root->left = root->right; SL&A?O lcéf + risht jaﬁff

root->right = tmp;
return root;
}
Let the pointer tree point to the root node of the tree depicted below:

20
/ \
42 13
/ \

6 18 27

/ \ /\
15 72 9 22 35

/

87
If the line of code tree = somefunction (tree) were executed, draw a picture of the resulting

binary tree that the pointer tree would point to.

Page 2 of 4

o s
!W’?C‘zf} &

Spring 2022 Section B: Advanced Data Structures
1) (10 pts) DSN (Binary Trees)

The goal of a function named legacyCount() is to take the root of a binary tree (roof) and return the number
of nodes that contain a value greater than at least one of their ancestors. For example, this function would
return 4 for the following tree, since 60 is greater than both of its ancestors (3 and 14), 40 is greater than
two of its ancestors (3 and 14) (even though 40 isn’t greater than its parent!), 28 is greater than both of its
ancestors (9 and 14), and 2 is greater than one of its ancestors (1).

14 Our node struct is as follows:
/ \
3 9 typedef struct node {
/ \ \ int data;
1 60 28 struct node *left;
/ \ struct node *right;
2 40 } node;

To make the code work, legacyCount() is a wrapper function for a recursive function called
legacyHelper(). Included below is the code for legacyCount() as well as the function signature for
legacyHelper(). Write all of the code for the legacyHelper() function. Note: If root is NULL, you should
return 0.

int legacyCount (node *root) {
if (root == NULL) return 0; v
return legacyHelper (root->left, root->data) + {

legacyHelper (root->right, root->data);

int legacyHelper (node* root, int minAncestor) {

£ (oot == NoLr) petvin O

) -

iv‘?)’ ans = C J
i ? (v??’iﬁ'} - (T;»f"f/?; > min 475? L(gk’/>

ans = 1

else -

[%f ‘,(ot > ¢ rf/,/ U“wl:'ﬁ?/f\f)

(>/

{x{ $//f7 /1%? CHVWE} t)6 67

4 e e v e (pe (} > et y, i Tces ts.)/

Page 2 of 4

Summer 2022 Section B: Advanced Data Structures
1) (10 pts) DSN (Binary Trees)
Demonstrate your understanding of recursion by rewriting the following recursive function, which

operates on a binary tree, as an iterative function. In doing so, you must abide by the following
restrictions:

1. Do not write any helper functions in your solution.
2. Do not make any recursive calls in your solution.

int foo(node *root) {

(
if (root == NULL) return 1;
if (root->left == NULL && root->right == NULL) return 2;
if (root->left == NULL) return 3 * foo(root->right);
if (root->right == NULL) return 4 * foo(root->left);
if |

root->right->data > root->left->data) return 5 * foo(root->right);

return 6 * foo(root->left);
—
}

int iterative foo(node *root) {
int rec =17

while (w f 1= NULL) S
0 (oot > e == WU 9
,"f vé‘/ “#)”7 ’”ES" "“ 2::

~)L
oot = p"ri‘"ﬁfr =7 ”-‘Ll‘c”—)

ol (€ (wot—> leff =7 worLt) S

- 3
g -« = 97
et = vorf 2 right s
5 "y <
else 1 f (oot = rishh =7 noee) ?
s 4 =
vt = et > left
Jete 2 wot > lett > Joke) %

else i€ (i/li‘t."{”)t"?’)"l/’—')'

s W+« = S/
root = oo} 2 Cigh f/;

E(Q(2 | |
res A 6/ "y
oot = ppot—21€ f s

5 4

} e ‘i\'j:/ﬂ/“ Ne s /‘,

Page 2 of 4

Summer 2019 Data Structures Exam, Part B
1) (10 pts) ALG (Binary Trees)

What does the function call solve (root) print out if root is pointing to the node storing 50 in the tree
shown below? The necessary struct and function are provided below as well. Please fill in the blanks
shown below. (Note: the left pointer of the node storing 50 points to the node storing 5, and all of the
pointers shown correspond to the direction they are drawn in the picture below.)

typedef struct bstNode {
int data;
struct bstNode *left;
struct bstNode *right;
} bstNode;

int solve(bstNode* root) {
if (root == NULL) return O;
int res = root->data;
int left = solve(root->left);

int right = solve(root->right);

if (left+right > res)
res = left+right;

printf ("%d, ", res);
return res;

—

5 7 7N 1§33 % 135S

—7)
v
9>

o

Page 2 of 4

Fall 2019 Data Structures Exam, Part B
1) (10 pts) DSN (Binary Search Trees)

A modified BST node stores the sum of the data values in its sub-tree. Complete writing the insert
function shown below recursively, so that it takes in a pointer to the root of a binary search tree, root, and
an integer, value, inserts a node storing value in it into the tree and returns a pointer to the root of the
resulting tree. Notice that this task is more difficult than a usual binary tree insert since the sum values in
several nodes must be updated as well. The struct used to store a node is shown below.

typedef struct bstNode {
struct bstNode * left, * right;
int data;
int sum;

} bstNode;

bstNode* insert (bstNode * root, int value) {

if (root == NULL) { =
bstNode* res = malloc(sizeof (bstNode)) ; —

res->data \/Q‘ ((/'*6‘ ;

res->sum = \/@ ,(/‘e’ ;
;‘ ,

res->left /LCQQL-;

1,7 3
res->right = /DOQJLW
return res;

if (value <= root->data)

A Sle® = ipsed (et > 1€ vole)

else \ .7
rest 57 sht =19 S'\f%”/ ('/7/-'&'7(= sb f! V<l e)% ;

oot 2> Som += Usloe -

7

return root;

Page 2 of 4

Spring 2021 Data Structures Exam, Part B

Name:
UCFID:
NID:

1) (10 pts) DSN (Binary Trees)

Write a function named find below() that takes a pointer to the root of a binary tree (root) and an integer
value (val) and returns the greatest value in the tree that is strictly less than val. If no such value exists,
simply return val itself. Note that the tree passed to your function will not necessarily be a binary search
tree; it’s just a regular binary tree.

For example:

18 find below(root, 196) would return 22
/ \ find below(root, 1) would return 1
7 4 find below(root, 4) would return 1
/ \ find below(root, 22) would return 18
1 22 find below(root, 20) would return 18
\ find below(root, 8) would return 7
(

8 find below(root, -23) would return -23

You must write your solution in a single function. You cannot write any helper functions.

The function signature and node struct are given below. I %

typedef struct node
{ | 2

int data; / \

struct node *left;

struct node *right; L1 fé;
} node;

int find below(node *root, int wval)

{
l€ (r’l/dl‘ == /UD’LL) ,vh/“vv \/c"/
_’__________-—-——-w ,
= = } lblf "1'(-4«

ot “‘H,g‘f CtlH,(/Z valy ﬂl%&'} vel ’,GH[EZ = sl .
v€ (wot >k 4 u«,r)gcmﬂﬁ T = wot > Jata;, nC Hj/ g
int |le&f 5 = LA - bcLA~7(EEﬂ§:Z:fﬂ <ﬂfﬁ~{jfé€*/ ;h, 9
e (lefrs 2 ver) Salt §07 = {eF'fS; nCtt,

1t V.zh)‘c B {:rOQ»be/VLJU (/Duf' >rght vel >;
€ (oght€ < Val)Salt(2 = rightSs netts 3

1 € (V\C; =-o) e trnm L/v/ _oife]-
o — M/W/ Mr FES—¢ é‘;q 7
-G;Q*T’—{-\'qf“ i l'/ IV J/, t IT) 11\: (a’ <
' bt ves = wltls s S
Cor (1nt 7= o, P@$20f4 1 &5 171 s
T E13C T =2 ve1) controvwes
& (s == veltt) ves = alfCif

e (@altCil >@s) peg= alt(iT-

etrrn nes -

