Quick Sort

// Pre-condition: low and high are value indices into numbers.
// Post-condition: The values in numbers will be sorted in between
// 			 indices low and high
void quicksort(int* numbers, int low, int high) {

 // Only have to sort if we are sorting more than one number
 if (low < high) {
 int split = partition(numbers,low,high);
 quicksort(______________________________);
 quicksort(______________________________);
 }
}

// Swaps the values pointed to by a and b.
void swap(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

	 (
vals
)8
	3
	6
	9
	2
	4
	1
	0
	7
	5

If we call quicksort(vals, 0, 9) (assume 6 is the partition element) fill in split and what the following recursive calls would contain:

split = _____________________
quicksort(______________________________)
quicksort(______________________________)

	 (
vals
)8
	3
	6
	9
	2
	4
	1
	0
	7
	5

Assume the 1st time partition is called, i = 2. Show the contents of vals after each iteration of the while loop:

After 1st Loop:
	
	
	
	
	
	
	
	
	
	

After 2nd Loop:
	
	
	
	
	
	
	
	
	
	

After 3rd Loop:
	
	
	
	
	
	
	
	
	
	

After putting partition in the right spot:
	
	
	
	
	
	
	
	
	
	

// Returns the partition index such that all the values stored in vals from low // to partition are < partition & all the vals from partition to high are > .
int partition(int* vals, int low, int high) {
 int temp;
 int i, lowpos;
		
 if (low == high) return low; // A base case that should never really occur.
		
 // Pick a random partition element and swap it into index low.	
 i = low + rand()%(high-low+1);
 temp = vals[i];
 vals[i] = vals[low];
 vals[low] = temp;
	
	lowpos = low; 	// Store the index of the partition element.
		
	low++; 	// Update our low pointer.
		
	while (low <= high) {
		// Move the low pointer until we find a value too large for this side.
		while (_________________________________) low++;
			
		// Move high until we find a value too small for this side.
		while (_______________________________________) high--;
			
		if (low < high) // Swap the two values that were on the wrong side.
		 swap(&vals[low], &vals[high]);
	}
	swap(&vals[lowpos], &vals[high]); // Swap partition into right spot.
		
	return high; // Return the index of the partition element.
}
