
Practice Problem
 Consider writing a function that takes in a number

in decimal, and prints out the equivalent value in
binary.

 We can utilize what we learned about base conversion.

 The key is as follows:

If we are converting 78 from base 10 to base 2, we calculate
78%2 = 0.

This is the LAST digit we want to print, since it’s the units digit
of our answer.

Preceding that zero, we must take the decimal number 78/2 =
39, and convert THAT to binary. But, this is a recursive task!!!

Practice Problem

void printInBinary(int number) {

if (number > 0) {

printReverse(number/2);

printf(“%d”, number%2);

}

}

Linked List Intro

COP 3502

Linked List Introduction
 A Linked List
 Is the simplest form of a linked structure.
 It consists of a chain of data locations called nodes

 A node
 Holds a piece of information AND
 a link to the next node

8
struct node {

int data;

struct node* next;

};

node

data next

8 3 …5

Linked List Introduction
 What are Linked Lists?
 Abstraction of a list
that is, a sequence of nodes in which each node is linked to

the node following it.

 Why not use an array?
 Each node in an array is stored in a contiguous space

in memory, this means:
Arrays are fixed size (not dynamic)

– We could realloc more space, but this requires work

Inserting and deleting elements is difficult
– For example, in an array of size 100, if we want to insert an

element after the 10th element – what do we have to do?

– We have to shift the remaining 90 elements in some way.

Linked List Introduction

 Pros
 They are dynamic – so length can increase or decrease

as necessary.

 Each node does not necessarily follow the previous
one in memory.

 Insertion and deletion is cheap
Only need to change a few nodes (at most)

 Is there a negative aspect of linked lists?
 We do not know the address of any individual node

So we have to traverse the list to find it, which may take a
large # of operations.

Linked List Example

 Let’s say we declare 3

Linked List nodes in

memory:
 struct node a, b, c;

 a.data = 1;

 b.data = 2;

 c.data = 3;

 a.next = b.next = c.next = NULL;

struct node {

int data;

struct node* next;

};

a

data next

b

data next

c

data next
1 2 3NULLNULL NULL

Linked List Example

 Let’s say we declare 3

Linked List nodes in

memory:
 a.next = &b;

 b.next = &c;

 a.next->data

 a.next->next->data

 b.next->next->data

struct node {

int data;

struct node* next;

};

a

data next

b

data next

c

data next
1 2 3NULLNULL NULL

Has value 2

Has value 3

Error!

Linked Lists in Detail

 A linked list is an ordered collection of data
 Each element (generally called nodes) contains the location

of the next element in the list
 Each node essentially has 2 parts:
 The data part

For our examples we’re usually just going to use an int, but really we
could store anything in each node.

If we wanted a linked list of student records we could store PIDs,
names, grades, etc.

 The link part
This link is used to connect the nodes together.
It is just a pointer to the next node in the list.
This variable is usually called “next”

name PID grade next

Linked Lists

 Node 3 data fields struct node {

char PID[8];

char name[80];

int gradePts;

struct node* next;

};

 struct node s1;

 strcpy(s1.name, “Sarah”);

 strcpy(s1.PID, “s123”);

 s1.grade = “100”;

 s1.next = NULL;

 struct node s2;

 strcpy(s1.name, “Dixie”);

 strcpy(s1.PID, “d000”);

 s1.grade = “10”;

 s1.next = NULL;

 s1.next = &s2;

name PID grade next name PID grade next
Dixie d000 10Sarah s123 100 NULL NULL

Linked Lists
 How to access nodes of a linked list

 Each node of the list is created dynamically and
points to the next node in the list

So from the first node, we can get to the second, etc.

 But how do you reach the first node?

You must have a pointer variable that simply points to the
front of the list, or the 1st node of the list.

This pointer can be called whatever you want.
– head

head data next NULLdata next data next

Linked Lists

 Example of an Empty Linked List
 struct node* head = NULL;

NULLhead

Linked Lists
 How to access nodes of a linked list

 Let’s assume we already have a list created with
several nodes

Don’t worry how we made it, we’ll cover adding to a list
after we cover traversing a list.

 We access the list via the pointer head

How would you move to the 2nd node in the list?

head data next NULLdata next data next

Linked Lists
 How to access nodes of a linked list

 One of the most common errors is to move the head
of the list.

if we make the head ptr point to the second node in the
list, we would have NO way to access the first record.

So rather than do that, what we need is a temporary
pointer to help us move through the list.

head data next NULLdata next data next

Linked Lists
 How to access nodes of a linked list

 We can define a helper pointer as follows:

 struct node *help_ptr;

 help_ptr = head;

head data next NULLdata next data next

help_ptr

 Something to notice:

 head and help_ptr are pointing to the
exact same linked list node.

Linked Lists
 How to access nodes of a linked list

 Another side note, in order to access that first node’s
data field, Could we do the following?
head.data

(*head).data

(*help_ptr).data

head->data

help_ptr->data

head data next NULLdata next data next

help_ptr

No, because head is a pointer

YES
YES

YES

YES

Linked Lists
 How to access nodes of a linked list

 Now consider using the pointer help_ptr to traverse
the list pointed to by head, we could do something like
this:
help_ptr = help_ptr->next;

– Note that the syntax is correct because both sides of the statement
our pointers to linked lists.

– Then we could refer to the data in the 2nd node using what syntax?

• help_ptr->data

head data next NULLdata next data next

help_ptr

Linked Lists

 Apply this procedure to print a linked list:

 Assume head is already pointing to a valid list of values

head 2 next NULL1 next 3 next

struct node *help_ptr;

help_ptr = head;

while (help_ptr != NULL) {

printf("%d ", help_ptr->data);

help_ptr = help_ptr->next;

}

help_ptr

1 2 3

Linked Lists: How to Add a Node

 This is how to create a node to be added to a list:
struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = 7;

temp->next = NULL;

 Now to add this node to the end of a list,
 Assume help_ptr is already pointing to the last node in

some list.
 Then all we have to do is connect the node help_ptr is

pointing to, to temp:
help_ptr->next = temp;

head 2 next NULL1 next 7 next

help_ptr temp

7

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:
struct node* AddEnd(struct node* head, int val) {

// Create the new node

// if the list is empty (head == NULL) return

// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

// if the list is empty (head == NULL) return

// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

// if the list is empty (head == NULL) return

// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next != NULL) {

curr = curr>next;

}

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next != NULL) {

curr = curr>next;

}

curr->next = temp;

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next != NULL) {

curr = curr>next;

}

curr->next = temp;

return head;

}

Linked Lists

 Let’s show an example of creating a list using
the function we just created…

 shown in class

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:
struct node* AddEnd(struct node* head, int val) {

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

struct node *curr;

curr = head;

while (curr->next!= NULL) {

curr = curr>next;

}

