
Practice Problem
 Consider writing a function that takes in a number

in decimal, and prints out the equivalent value in
binary.

 We can utilize what we learned about base conversion.

 The key is as follows:

If we are converting 78 from base 10 to base 2, we calculate
78%2 = 0.

This is the LAST digit we want to print, since it’s the units digit
of our answer.

Preceding that zero, we must take the decimal number 78/2 =
39, and convert THAT to binary. But, this is a recursive task!!!

Practice Problem

void printInBinary(int number) {

if (number > 0) {

printReverse(number/2);

printf(“%d”, number%2);

}

}

Linked List Intro

COP 3502

Linked List Introduction
 A Linked List
 Is the simplest form of a linked structure.
 It consists of a chain of data locations called nodes

 A node
 Holds a piece of information AND
 a link to the next node

8
struct node {

int data;

struct node* next;

};

node

data next

8 3 …5

Linked List Introduction
 What are Linked Lists?
 Abstraction of a list
that is, a sequence of nodes in which each node is linked to

the node following it.

 Why not use an array?
 Each node in an array is stored in a contiguous space

in memory, this means:
Arrays are fixed size (not dynamic)

– We could realloc more space, but this requires work

Inserting and deleting elements is difficult
– For example, in an array of size 100, if we want to insert an

element after the 10th element – what do we have to do?

– We have to shift the remaining 90 elements in some way.

Linked List Introduction

 Pros
 They are dynamic – so length can increase or decrease

as necessary.

 Each node does not necessarily follow the previous
one in memory.

 Insertion and deletion is cheap
Only need to change a few nodes (at most)

 Is there a negative aspect of linked lists?
 We do not know the address of any individual node

So we have to traverse the list to find it, which may take a
large # of operations.

Linked List Example

 Let’s say we declare 3

Linked List nodes in

memory:
 struct node a, b, c;

 a.data = 1;

 b.data = 2;

 c.data = 3;

 a.next = b.next = c.next = NULL;

struct node {

int data;

struct node* next;

};

a

data next

b

data next

c

data next
1 2 3NULLNULL NULL

Linked List Example

 Let’s say we declare 3

Linked List nodes in

memory:
 a.next = &b;

 b.next = &c;

 a.next->data

 a.next->next->data

 b.next->next->data

struct node {

int data;

struct node* next;

};

a

data next

b

data next

c

data next
1 2 3NULLNULL NULL

Has value 2

Has value 3

Error!

Linked Lists in Detail

 A linked list is an ordered collection of data
 Each element (generally called nodes) contains the location

of the next element in the list
 Each node essentially has 2 parts:
 The data part

For our examples we’re usually just going to use an int, but really we
could store anything in each node.

If we wanted a linked list of student records we could store PIDs,
names, grades, etc.

 The link part
This link is used to connect the nodes together.
It is just a pointer to the next node in the list.
This variable is usually called “next”

name PID grade next

Linked Lists

 Node 3 data fields struct node {

char PID[8];

char name[80];

int gradePts;

struct node* next;

};

 struct node s1;

 strcpy(s1.name, “Sarah”);

 strcpy(s1.PID, “s123”);

 s1.grade = “100”;

 s1.next = NULL;

 struct node s2;

 strcpy(s1.name, “Dixie”);

 strcpy(s1.PID, “d000”);

 s1.grade = “10”;

 s1.next = NULL;

 s1.next = &s2;

name PID grade next name PID grade next
Dixie d000 10Sarah s123 100 NULL NULL

Linked Lists
 How to access nodes of a linked list

 Each node of the list is created dynamically and
points to the next node in the list

So from the first node, we can get to the second, etc.

 But how do you reach the first node?

You must have a pointer variable that simply points to the
front of the list, or the 1st node of the list.

This pointer can be called whatever you want.
– head

head data next NULLdata next data next

Linked Lists

 Example of an Empty Linked List
 struct node* head = NULL;

NULLhead

Linked Lists
 How to access nodes of a linked list

 Let’s assume we already have a list created with
several nodes

Don’t worry how we made it, we’ll cover adding to a list
after we cover traversing a list.

 We access the list via the pointer head

How would you move to the 2nd node in the list?

head data next NULLdata next data next

Linked Lists
 How to access nodes of a linked list

 One of the most common errors is to move the head
of the list.

if we make the head ptr point to the second node in the
list, we would have NO way to access the first record.

So rather than do that, what we need is a temporary
pointer to help us move through the list.

head data next NULLdata next data next

Linked Lists
 How to access nodes of a linked list

 We can define a helper pointer as follows:

 struct node *help_ptr;

 help_ptr = head;

head data next NULLdata next data next

help_ptr

 Something to notice:

 head and help_ptr are pointing to the
exact same linked list node.

Linked Lists
 How to access nodes of a linked list

 Another side note, in order to access that first node’s
data field, Could we do the following?
head.data

(*head).data

(*help_ptr).data

head->data

help_ptr->data

head data next NULLdata next data next

help_ptr

No, because head is a pointer

YES
YES

YES

YES

Linked Lists
 How to access nodes of a linked list

 Now consider using the pointer help_ptr to traverse
the list pointed to by head, we could do something like
this:
help_ptr = help_ptr->next;

– Note that the syntax is correct because both sides of the statement
our pointers to linked lists.

– Then we could refer to the data in the 2nd node using what syntax?

• help_ptr->data

head data next NULLdata next data next

help_ptr

Linked Lists

 Apply this procedure to print a linked list:

 Assume head is already pointing to a valid list of values

head 2 next NULL1 next 3 next

struct node *help_ptr;

help_ptr = head;

while (help_ptr != NULL) {

printf("%d ", help_ptr->data);

help_ptr = help_ptr->next;

}

help_ptr

1 2 3

Linked Lists: How to Add a Node

 This is how to create a node to be added to a list:
struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = 7;

temp->next = NULL;

 Now to add this node to the end of a list,
 Assume help_ptr is already pointing to the last node in

some list.
 Then all we have to do is connect the node help_ptr is

pointing to, to temp:
help_ptr->next = temp;

head 2 next NULL1 next 7 next

help_ptr temp

7

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:
struct node* AddEnd(struct node* head, int val) {

// Create the new node

// if the list is empty (head == NULL) return

// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

// if the list is empty (head == NULL) return

// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

// if the list is empty (head == NULL) return

// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next != NULL) {

curr = curr>next;

}

// Add the new node to the end

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next != NULL) {

curr = curr>next;

}

curr->next = temp;

// return the front of the list

}

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int val) {

// Create the new node

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list

struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next != NULL) {

curr = curr>next;

}

curr->next = temp;

return head;

}

Linked Lists

 Let’s show an example of creating a list using
the function we just created…

 shown in class

Linked Lists: How to Add a Node

 Now we can create a function that traverses a
list and adds a node to the end of the list:
struct node* AddEnd(struct node* head, int val) {

struct node *temp;

temp = (struct node*)malloc(sizeof(struct node));

temp->data = val;

temp->next = NULL;

if (head == NULL) return temp;

struct node *curr;

curr = head;

while (curr->next!= NULL) {

curr = curr>next;

}

