

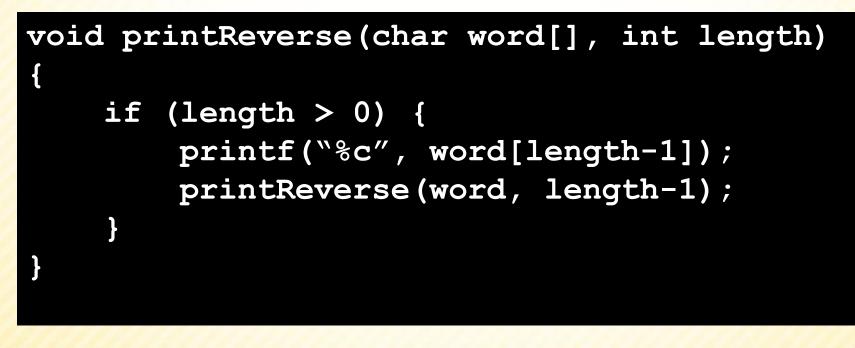
BASE CONVERSION

COP 3502

Practice Problem

- Print a String in reverse order:
- For example, if we want to print "HELLO" backwards,
 - we first print: "O", then we print "HELL" backwards... this is where the recursion comes in!
- See if you can come up with a solution for this

Practice Problem



The Decimal Numbering System

What is the decimal numbering system?

Have you ever thought about why we use this system or how it came about?

Base 10

Our regular counting system is decimal

i.e. Base 10

> This is because we use 10 distinct digits, 0 \rightarrow 9

In general the numerical value of a number, is what you were taught in elementary school:

>2713

 $> = 2 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 3 \times 10^0$

Where each digit's value is determined by what place it's in, going from right to left:

Note: each 'place'	, »	3 is in the 1's place	3
is a perfect	, »	1 is in the 10's place	10
	»	7 is in the 100's place	700
i.e. 10	»	2 is in the 1000's place	+2000
			2712

Base Conversion

- Although this may seem to be the only possible numbering system,
 - it turns out that the number of digits used is arbitrary!
 - We could just have easily chosen 5 digits (0→4),
 > in which case the value of a number would be:

$$= 3x5^2 + 1x5^1 + 4x5^0 = 84_{10}$$

Thus, this is how we convert from a different base to base 10

Base Conversion

 $314_5 = 3x5^2 + 1x5^1 + 4x5^0 = 84_{10}$

In general, we can use the following formula: $d_{n-1}d_{n-2}...d_2d_1d_0$ (in base b) = $d_{n-1}xb^{n-1} + d_{n-2}xb^{n-2} + ... + d_2xb^2 + d_1xb + d_0$

(Note: b raised to the 1 and 0 powers were simplified)

Base Conversion to Base 10

- Given, 781₉ what would this be base 10?
 781₉ = 7x9² + 8x9¹ + 1x9⁰
 = 640₁₀
- Given, 1110101₂ what would this be base 10?
 1110101₂ = 1x2⁶ + 1x2⁵ + 1x2⁴ + 0x2³ + 1x2² + 0x2¹ + 1x2⁰
 = 117₁₀
 - Base 2 is so common it's called binary >(heard of it before?)

Binary and Hexadecimal

- The uses of Binary and Hexadecimal
 - A "digital" computer, (vs analog) operates on the principle of 2 possible states ON and OFF
 - This corresponds to there being an electrical current present, or absent.
 - So ON is "1" and OFF is "0"
 - Each binary digit, or "bit" corresponds to a single "switch" in a circuit
 - And if we add up enough switches we can represent more numbers, so instead of one digit we can get 8 to make a byte.

Binary and Hexadecimal

So why do all computers use binary then?

Simple answer – computer weren't designed to use binary, rather, binary was determined to be the most practical system to use with the computers we did design

Binary and Hexadecimal

- So this explains why we would want to use binary, but why would we ever want hexadecimal?
 - Octal and hexadecimal are simply a shorter representation of binary, or a more human readable version of binary.
 - Usually used more memory addresses or RGB color values
 - So if you want to specify this color:
 - You don't have to type: 1111 1111 0000 0000 1111 1111
 - You can type: #FF00FF

Hexadecimal

- The most common base above 10 is 16
 - Which is known as Hexadecimal
 - The 16 digits are:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 Where A = 10, B = 11, C = 12, D = 13, E = 14, F = 15
 - Note that converting from Hexadecimal to Decimal, is the same as the previous slide

•
$$A3D_{16} =$$

= $Ax16^2 + 3x16^1 + D = 10x16^2 + 3x16 + 13$
= 2621_{10}

Converting from Hexadecimal to Binary

- Since 16 is a perfect power of 2, converting to base 2 is relatively easy ⁽³⁾
 - We find that each hexadecimal digit is perfectly represented by 4 binary digits (since 16 = 2⁴)
- Here's a chart with the conversions between each hexadecimal digit and base 2:

<u>Hex</u>	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	
<u>Bin</u>	0000	0001	0010	0011	0100	0101	0110	0111	
	0	•	•	D	C		F	F	
<u>Hex</u>	<u>8</u>	<u>9</u>	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	F	

Converting from Hexadecimal to Binary

Using the chart below,

- What is ACD₁₆ in binary?
 - ≥ = 1010 0011 1101₂

<u>Hex</u>	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
<u>Bin</u>	0000	0001	0010	0011	0100	0101	0110	0111
<u>Hex</u>	<u>8</u>	<u>9</u>	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>

- Let's consider converting a number in decimal to another base, say binary
 - For example convert 117₁₀ to binary
 - We know that the format is going to look something like this:
 - $117_{10} = d_6 x 2^6 + d_5 x 2^5 + d_4 x 2^4 + d_3 x 2^3 + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0$
- So, what we know is this:
 - All of the terms on the right hand side are divisible by 2 except the last.

Sooo all of them will give a remainder of 0, when divided by 2

 \geq Thus we know that d₀ = 117%2, this is the remainder

 $117_{10} = d_6 x 2^6 + d_5 x 2^5 + d_4 x 2^4 + d_3 x 2^3 + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0$

- Now if we divide the right hand side by 2, using int division we get:
 - $\frac{d_{6}x^{25} + d_{5}x^{24} + d_{4}x^{23} + d_{3}x^{22} + d_{2}x^{21} + d_{1}x^{20}}{d_{6}x^{25} + d_{5}x^{24} + d_{4}x^{23} + d_{3}x^{22} + d_{2}x^{21} + d_{1}x^{20}}$
 - This number must equal 117/2 = 58,
 - So we've come up with a process of continually reducing the equation by a factor of 2...

 $117_{10} = d_6 x 2^6 + d_5 x 2^5 + d_4 x 2^4 + d_3 x 2^3 + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0$

Here is the whole process:

- 117 % 2 = 1 (d₀) 117/2 = 58
- **58** % 2 = 0 (d_1) 58/2 = 29
- 29 % 2 = 1 (d₂) 29/2 = 14
- **14** % 2 = 0 (d₃) 14/2 = 7
- **7** % 2 = 1 (d₄) 7/2 = 3
- **3** % 2 = 1 (d_5) 3/2 = 1

Now, read the answer from the bottom up!

1 % 2 = 1 (d₆) 1/2 = 0 (we can stop)

 $117_{10} = d_6 x 2^6 + d_5 x 2^5 + d_4 x 2^4 + d_3 x 2^3 + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0$

Here is the whole process:

- 117 % 2 = 1 (d₀) 117/2 = 58
- **58** % 2 = 0 (d₁) 58/2 = 29
- 29 % 2 = 1 (d₂) 29/2 = 14
- **14** % $2 = 0 (d_3) 14/2 = 7$
- **7** % 2 = 1 (d₄) 7/2 = 3
- **3** % 2 = 1 (d_5) 3/2 = 1

Now, read the answer from the bottom up!

1110101

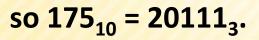
1 % 2 = 1 (d₆) 1/2 = 0 (we can stop)

Practice Problem

- Convert the following from decimal to the given base:
- $175_{10} = 3$
- 175 % 3 = 1 175/3 = 58
- **58 % 3 = 1 58/3 = 19**
- **19 % 3 = 1 19/3 = 6**
- **6 % 3 = 0** 6/3 = 2
- 2 % 3 = 2 2/3 = 0,

381 % 16 = 13 (D) 381/16 = 23 23/16 = 123 % 16 = 7 1 % 16 = 1 1/16 = 0,

so $381_{10} = 17D_{16}$.



Converting from any base

- Converting from any base (B1) to and other base (B2) where neither base is base 10
 - What do we do?
 - Don't panic!
 - >We can:
 - 1. Convert from base B1 to base 10
 - 2. Convert from base 10 to base B2
 - Phew! We know how to do both of those!

Converting from any base

- If you are converting between two bases that are perfect powers of 2,
 - the following procedure works more quickly:
 - 1. Convert from base B1 to base 2
 - 2. Convert from base 2 to base B2
 - Consider the following example
 - We want to know what ACD₁₆ is in base 8
 - We know ACD₁₆ = 1010 0011 1101₂ from before
 - Know we must convert the right-hand side to base 8.

Converting from any base

- We know ACD₁₆ = 1010 0011 1101₂ from before
- Now we must convert the right-hand side to base 8.
 - Remember that 8 = 2³, so thre3 binary digits perfectly represent one octal (base 8) digit.
 - So let's just group the binary digits in sets of 3, from right to left
 - 101 000 111 101₂
 - And finally convert each set of three binary digits to its octal equivalent:
 - > 5075₈
 - Note: only works when one base is a perfect power of the second base.

Why this works:

 $A3D_{16} = 10x16^2 + 3x16^1 + 13x16^0$

- $= (1x2^{3} + 0x2^{2} + 1x2^{1} + 0x2^{0})x16^{2} + (0x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0})x16^{1} + (1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0})$
- = (1x2³ + 0x2² + 1x2¹ + 0x2⁰)x2⁸ + (0x2³ + 0x2² + 1x2¹ + 1x2⁰)x2⁴ + (1x2³ + 1x2² + 0x2¹ + 1x2⁰), by rewriting 16 as a power of 2.

$$= 1x2^{11} + 0x2^{10} + 1x2^9 + 0x2^8 + 0x2^7 + 0x2^6 + 1x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

 $= 101000111101_2.$

Practice Problem

- Consider writing a function that takes in a number in decimal, and prints out the equivalent value in binary.
 - We can utilize what we learned about base conversion.
 - The key is as follows:
 - If we are converting 78 from base 10 to base 2, we calculate 78%2 = 0.
 - This is the LAST digit we want to print, since it's the units digit of our answer.
 - Preceding that zero, we must take the decimal number 78/2 = 39, and convert THAT to binary. But, this is a recursive task!!!

