
More Recursion:

Flood Fill & 

Exponentiation

COP 3502



Recursive Flood Fill Algorithm

 A Flood Fill is a name given to 
the following basic idea:

 In a space (typically 2-D, or 3-D) 
with an initial starting square, fill 
in all the adjacent squares with 
some value or item.

Until some boundary is hit.

For example, the paint bucket in MS 
Paint is an example of flood fill.

Example of a Recursive
Flood Fill with 4 directions

http://en.wikipedia.org/wiki/File:Recursive_Flood_Fill_4_(aka).gif


Recursive Flood Fill Algorithm
 Imagine you want to fill in a “lake” with the ~ 

character. 
 We’d like to write a function that takes in one spot in 

the lake (the coordinates to that spot in the grid)
 In the example, you can see we don’t want to just 

replace all “_” with “~”, because we just want to fill the 
contiguous area.



Recursive Flood Fill Algorithm
 Depending on how the floodfill should occur
 Do we just fill in each square above, below, left, 

and right

 OR do we ALSO fill in the diagonals

 The basic idea behind a recursive function, is 
shown in pseudocode:

Void FloodFill(char grid[][SIZE], int x, int y) {

grid[x][y] = FILL_CHARACTER;

for (each adjacent location i,j to x,y) {

if (i,j is inbounds and not filled)

FloodFill(grid, i, j);

}

}



Recursive Flood Fill Algorithm
 When we actually write the code,
 We may either choose a loop to go through the 

adjacent locations, or simply spell them out.
 If there are 8 locations (using the diagonal) a loop is 

better.
 If there are 4 or fewer (North, South, East, West)

It might make more sense to write each recursive call 
separately.

Void FloodFill(char grid[][SIZE], int x, int y) {

grid[x][y] = FILL_CHARACTER;

for (each adjacent location i,j to x,y) {

if (i,j is inbounds and not filled)

FloodFill(grid, i, j);

}

}



General Structure of Recursive 
Functions

 Here are 2 general constructs of recursive 
functions

if (termination condition) {

DO FINAL ACTION

}

else {

Take 1 step closer to                                             

____terminating condition

Call function RECURSIVELY 

____on smaller sub-problem

}

if (!termination condition) {

___Take 1 step closer to                                             

____terminating condition

Call function RECURSIVELY 

____on smaller sub-problem

}

Typically, functions that return values 
use this construct.

While void recursive function use the 
this construct.

Note:  These are not the ONLY layouts of 
recursive programs, just common ones.



Recursive Flood Fill Algorithm

 Implementation shown in class…



Fast Exponentiation

COP 3502



Fast Exponentiation

 On the first lecture on recursion we discussed 
the Power function:

 But this is slow for very large exponents.

// Pre-conditions:  exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}



Fast Exponentiation

 An example of an application that uses very 
large exponents is data encryption

 One method for encryption of data (such as credit 
card numbers) involves modular exponentiation, 
with very large exponents.

Using the original recursive Power, it would take 
thousands of years just to do a single calculation.

Luckily, with one very simple observation, the 
algorithm can take a second or two with these large 
numbers.



Fast Exponentiation

 The key idea is that IF the exponent is even, we can 
exploit the following formula:
 be = (be/2)x(be/2)

 For example, 28 = 24*24

Now, if we know 24 we can calculate 28 with a single 
multiplication.

24 = 22*22

And 22 =2*2

 Now we can return:
2*2 = 4, 4*4 = 16, 16*16 = 256

This required only 3 multiplications, instead of 7



Fast Exponentiation

 The key idea is that IF the exponent is even, we can 
exploit the following formula:
 be = (be/2)x(be/2)

 So, In order to find, bn we find bn/2

Half of the original amount

 And then to find bn/2, we find bn/4

Again, Half of bn/2

 So if we are reducing the number of multiplications we have 
to make in half each time, what might the run time be?
Log n multiplications

Which is much better than the original n multiplications.

 But this only works if n is even…



Fast Exponentiation

 The key idea is that IF the exponent is even, we can 
exploit the following formula:
 be = (be/2)x(be/2)

 Since n is an integer, we have to rely on integer division 
which rounds down to the closest integer.

 What if n is odd?
bn = bn/2*bn/2*b

So 29 = 24*24*2 

 Which gives us the following formula to base our 
recursive algorithm on:
bn = bn/2*bn/2 if n is even

bn/2*bn/2*b if n is odd



Fast Exponentiation

 Here is the code, notice it uses the same base 
case as the previous Power function:

int PowerNew(int base, int exp) {

if (exp == 0)

return 1;

else if (exp == 1)

return base;

else if (exp%2 == 0)

return PowerNew(base*base, exp/2);

else

return base*PowerNew(base, exp-1);

}



Fast Exponentiation

 Here is the code for Fast Exponentiation using Mod:

 Even using mod, the stack is overflowed quickly, so this 
solution needs to be translated to an iterative solution.

int modPow(int base, int exp, int n) {

base = base%n;

if (exp == 0)

return 1;

else if (exp == 1)

return base;

else if (exp%2 == 0)

return modPow(base*base%n, exp/2, n);

else

return base*modePow(base, exp-1, n)%n;

}



Practice Problem

 Print a String in reverse order:

 For example, if we want to print  “HELLO” 
backwards,

 we first print:  “O”, then we print “HELL” 
backwards… this is where the recursion comes in!

 See if you can come up with a solution for this


