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Recursive Flood Fill Algorithm

 A Flood Fill is a name given to 
the following basic idea:

 In a space (typically 2-D, or 3-D) 
with an initial starting square, fill 
in all the adjacent squares with 
some value or item.

Until some boundary is hit.

For example, the paint bucket in MS 
Paint is an example of flood fill.

Example of a Recursive
Flood Fill with 4 directions

http://en.wikipedia.org/wiki/File:Recursive_Flood_Fill_4_(aka).gif


Recursive Flood Fill Algorithm
 Imagine you want to fill in a “lake” with the ~ 

character. 
 We’d like to write a function that takes in one spot in 

the lake (the coordinates to that spot in the grid)
 In the example, you can see we don’t want to just 

replace all “_” with “~”, because we just want to fill the 
contiguous area.



Recursive Flood Fill Algorithm
 Depending on how the floodfill should occur
 Do we just fill in each square above, below, left, 

and right

 OR do we ALSO fill in the diagonals

 The basic idea behind a recursive function, is 
shown in pseudocode:

Void FloodFill(char grid[][SIZE], int x, int y) {

grid[x][y] = FILL_CHARACTER;

for (each adjacent location i,j to x,y) {

if (i,j is inbounds and not filled)

FloodFill(grid, i, j);

}

}



Recursive Flood Fill Algorithm
 When we actually write the code,
 We may either choose a loop to go through the 

adjacent locations, or simply spell them out.
 If there are 8 locations (using the diagonal) a loop is 

better.
 If there are 4 or fewer (North, South, East, West)

It might make more sense to write each recursive call 
separately.

Void FloodFill(char grid[][SIZE], int x, int y) {

grid[x][y] = FILL_CHARACTER;

for (each adjacent location i,j to x,y) {

if (i,j is inbounds and not filled)

FloodFill(grid, i, j);

}

}



General Structure of Recursive 
Functions

 Here are 2 general constructs of recursive 
functions

if (termination condition) {

DO FINAL ACTION

}

else {

Take 1 step closer to                                             

____terminating condition

Call function RECURSIVELY 

____on smaller sub-problem

}

if (!termination condition) {

___Take 1 step closer to                                             

____terminating condition

Call function RECURSIVELY 

____on smaller sub-problem

}

Typically, functions that return values 
use this construct.

While void recursive function use the 
this construct.

Note:  These are not the ONLY layouts of 
recursive programs, just common ones.



Recursive Flood Fill Algorithm

 Implementation shown in class…



Fast Exponentiation
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Fast Exponentiation

 On the first lecture on recursion we discussed 
the Power function:

 But this is slow for very large exponents.

// Pre-conditions:  exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}



Fast Exponentiation

 An example of an application that uses very 
large exponents is data encryption

 One method for encryption of data (such as credit 
card numbers) involves modular exponentiation, 
with very large exponents.

Using the original recursive Power, it would take 
thousands of years just to do a single calculation.

Luckily, with one very simple observation, the 
algorithm can take a second or two with these large 
numbers.



Fast Exponentiation

 The key idea is that IF the exponent is even, we can 
exploit the following formula:
 be = (be/2)x(be/2)

 For example, 28 = 24*24

Now, if we know 24 we can calculate 28 with a single 
multiplication.

24 = 22*22

And 22 =2*2

 Now we can return:
2*2 = 4, 4*4 = 16, 16*16 = 256

This required only 3 multiplications, instead of 7



Fast Exponentiation

 The key idea is that IF the exponent is even, we can 
exploit the following formula:
 be = (be/2)x(be/2)

 So, In order to find, bn we find bn/2

Half of the original amount

 And then to find bn/2, we find bn/4

Again, Half of bn/2

 So if we are reducing the number of multiplications we have 
to make in half each time, what might the run time be?
Log n multiplications

Which is much better than the original n multiplications.

 But this only works if n is even…



Fast Exponentiation

 The key idea is that IF the exponent is even, we can 
exploit the following formula:
 be = (be/2)x(be/2)

 Since n is an integer, we have to rely on integer division 
which rounds down to the closest integer.

 What if n is odd?
bn = bn/2*bn/2*b

So 29 = 24*24*2 

 Which gives us the following formula to base our 
recursive algorithm on:
bn = bn/2*bn/2 if n is even

bn/2*bn/2*b if n is odd



Fast Exponentiation

 Here is the code, notice it uses the same base 
case as the previous Power function:

int PowerNew(int base, int exp) {

if (exp == 0)

return 1;

else if (exp == 1)

return base;

else if (exp%2 == 0)

return PowerNew(base*base, exp/2);

else

return base*PowerNew(base, exp-1);

}



Fast Exponentiation

 Here is the code for Fast Exponentiation using Mod:

 Even using mod, the stack is overflowed quickly, so this 
solution needs to be translated to an iterative solution.

int modPow(int base, int exp, int n) {

base = base%n;

if (exp == 0)

return 1;

else if (exp == 1)

return base;

else if (exp%2 == 0)

return modPow(base*base%n, exp/2, n);

else

return base*modePow(base, exp-1, n)%n;

}



Practice Problem

 Print a String in reverse order:

 For example, if we want to print  “HELLO” 
backwards,

 we first print:  “O”, then we print “HELL” 
backwards… this is where the recursion comes in!

 See if you can come up with a solution for this


