

- A Flood Fill is a name given to the following basic idea:
 - In a space (typically 2-D, or 3-D) with an initial starting square, fill in all the adjacent squares with some value or item.
 - Until some boundary is hit.
 - For example, the paint bucket in MS Paint is an example of flood fill.

Example of a Recursive Flood Fill with 4 directions

- Imagine you want to fill in a "lake" with the ~ character.
 - We'd like to write a function that takes in one spot in the lake (the coordinates to that spot in the grid)
 - In the example, you can see we don't want to just replace all "_" with "~", because we just want to fill the contiguous area.

***	****
** ***	**~***
** * **	**~~*
**	**~~*
**	**~~~~~~
**	**~~~~~
**	**~~~~~~
****	****

Depending on how the floodfill should occur

- Do we just fill in each square above, below, left, and right
- OR do we ALSO fill in the diagonals
- The basic idea behind a recursive function, is shown in pseudocode:

```
Void FloodFill(char grid[][SIZE], int x, int y) {
    grid[x][y] = FILL_CHARACTER;
```

```
for (each adjacent location i,j to x,y) {
    if (i,j is inbounds and not filled)
        FloodFill(grid, i, j);
```


- When we actually write the code,
 - We may either choose a loop to go through the adjacent locations, or simply spell them out.
 - If there are 8 locations (using the diagonal) a loop is better.
 - If there are 4 or fewer (North, South, East, West)
 - It might make more sense to write each recursive call separately.

Void FloodFill(char grid[][SIZE], int x, int y) {
 grid[x][y] = FILL_CHARACTER;

```
for (each adjacent location i,j to x,y) {
    if (i,j is inbounds and not filled)
        FloodFill(grid, i, j);
```


General Structure of Recursive Functions

Here are 2 general constructs of recursive functions

<pre>if (termination condition) {</pre>
DO FINAL ACTION
}
else {
Take 1 step closer to
terminating condition
Call function RECURSIVELY
on smaller sub-problem
}

if (!termination condition) { Take 1 step closer to terminating condition

> Call function RECURSIVELY on smaller sub-problem

While void recursive function use the this construct.

Typically, functions that return values use this construct.

Note: These are not the ONLY layouts of recursive programs, just common ones.

Implementation shown in class...

FAST EXPONENTIATION

COP 3502

- On the first lecture on recursion we discussed the Power function:
 - But this is slow for very large exponents.

```
// Pre-conditions: exponent is >= to 0
// Post-conditions: returns base<sup>exponent</sup>
int Power(int base, int exponent) {
    if (exponent == 0)
        return 1;
    else
        return (base*Power(base, exponent - 1);
}
```


- An example of an application that uses very large exponents is data encryption
 - One method for encryption of data (such as credit card numbers) involves modular exponentiation, with very large exponents.
 - Using the original recursive Power, it would take thousands of years just to do a single calculation.
 - Luckily, with one very simple observation, the algorithm can take a second or two with these large numbers.

- The key idea is that IF the exponent is even, we can exploit the following formula:
 - b^e = (b^{e/2})x(b^{e/2})
 - For example, 2⁸ = 2⁴*2⁴
 - Now, if we know 2⁴ we can calculate 2⁸ with a single multiplication.
 - $>2^4 = 2^{2*}2^2$
 - >And $2^2 = 2*2$
 - Now we can return:

>2*2 = 4, 4*4 = 16, 16*16 = 256

This required only 3 multiplications, instead of 7

- The key idea is that IF the exponent is even, we can exploit the following formula:
 - b^e = (b^{e/2})x(b^{e/2})
 - So, In order to find, bⁿ we find b^{n/2}
 - Half of the original amount
 - And then to find b^{n/2}, we find b^{n/4}
 - ≻Again, Half of b^{n/2}
 - So if we are reducing the number of multiplications we have to make in half each time, what might the run time be?
 - Log n multiplications
 - Which is much better than the original n multiplications.
 - But this only works if n is even...

- The key idea is that IF the exponent is even, we can exploit the following formula:
 - b^e = (b^{e/2})x(b^{e/2})
 - Since n is an integer, we have to rely on integer division which rounds down to the closest integer.
 - What if n is odd?

 $> b^n = b^{n/2} * b^{n/2$

So 2⁹ = 2⁴*2⁴*2

Which gives us the following formula to base our recursive algorithm on:

$$b^{n} = \begin{bmatrix} b^{n/2*}b^{n/2} & \text{if n is even} \\ b^{n/2*}b^{n/2*}b & \text{if n is odd} \end{bmatrix}$$

Here is the code, notice it uses the same base case as the previous Power function:

```
int PowerNew(int base, int exp) {
    if (exp == 0)
        return 1;
    else if (exp == 1)
        return base;
    else if (exp%2 == 0)
        return PowerNew(base*base, exp/2);
    else
        return base*PowerNew(base, exp-1);
```

Here is the code for Fast Exponentiation using Mod:

```
int modPow(int base, int exp, int n) {
      base = base%n;
      if (exp == 0)
            return 1;
      else if (exp == 1)
            return base;
      else if (exp \% 2 == 0)
            return modPow(base*base%n, exp/2, n);
      else
            return base*modePow(base, exp-1, n)%n;
```

Even using mod, the stack is overflowed quickly, so this solution needs to be translated to an iterative solution.

Practice Problem

- Print a String in reverse order:
- For example, if we want to print "HELLO" backwards,
 - we first print: "O", then we print "HELL" backwards... this is where the recursion comes in!
- See if you can come up with a solution for this

