
Linear vs Binary

Search

COP 3502

What is recursion?
// Pre-conditions: exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}

Power(5,2) : return 5 * Power(5,1)

return 5 * Power(5,0)Power(5,1) :

return 1Power(5,0) :

Stack trace back
to the original function call

1

5 * 1 = 5

5* 5 = 25

 To convince you that this works, let’s look at an example:
 Power(5,2):

STACK

Recursion

 Why use recursion?
 Some solutions are naturally recursive.

In these cases there might be less code for a recursive
solution, and it might be easier to read and understand.

 Why NOT user recursion?
 Every problem that can be solved with recursion can

be solved iteratively.
 Recursive calls take up memory and CPU time

Exponential Complexity – calling the Fib function uses 2n

function calls.

 Consider time and space complexity.

Recursion Example

 Let’s do another example problem – Fibonacci
Sequence

 1, 1, 2, 3, 5, 8, 13, 21, …

 Let’s create a function int Fib(int n)

 we return the nth Fibonacci number

 Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,
…

 What would our base (or stopping) cases be?

Fibonacci

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

 Base (stopping) cases:
 Fib(1) = 1
 Fib(2) = 1,

 Then for the rest of the cases: Fib(n) = ?
 Fib(n) = Fib(n-1) + Fib(n-2), for n>2

 So Fib(9) = ?
 Fib(8) + Fib(7) = 21 + 13

Recursion - Fibonacci

 See if we can program the Fibonacci
example…

Recursion - Fibonacci

 Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)

Fibo(4) Fibo(3)

Fibo(3) Fibo(2) Fibo(2) Fibo(1)

Fibo(2) Fibo(1)

Recursion - Fibonacci

 Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)

Fibo(4) Fibo(3)

Fibo(3) Fibo(2) Fibo(2) Fibo(1)

Fibo(2) Fibo(1)

Recursion - Fibonacci

 Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)

Fibo(4) Fibo(3)

Fibo(3) Fibo(2) Fibo(2) Fibo(1)

Fibo(2) Fibo(1)

3+2=5

2+1=3 1+1=2

1+1=2 1 1 1

1 1

Linear Search

 In C Programming, we looked at the problem of
finding a specified value in an array.
 The basic strategy was:

Look at each value in the array and compare to x
– If we see that value, return true

– else keep looking

– If we’re done looking through the array and still haven’t found it,
return false.

int search(int array[], int len, int value) {

int i;

for (i = 0; i < len; i++) {

if (array[i] == value)

return 1;

}

return 0;

}

Linear Search

 For an unsorted array, this algorithm is optimal.

 There’s no way you can definitively say that a value
isn’t in the array unless you look at every single spot.

 But we might ask the question, could we find an
item in an array faster if it were already sorted?

int search(int array[], int len, int value) {

int i;

for (i = 0; i < len; i++) {

if (array[i] == value)

return 1;

}

return 0;

}

Binary Search

 Consider the game you probably played when
you were little:

I have a secret number in between 1 and 100, make a
guess and I’ll tell you whether your guess is too high or
too low.

Then you guess again, and continue guessing until you
guess right.

 What would a good strategy for this game be?

Binary Search

 If you divide your search space in half each time,
 you won’t run the risk of searching ¾ of the list each

time.
 For instance, if you pick 75 for your number, and you

get the response “too high”,
 Then your number is anywhere from 1-74…

 So generally the best strategy is:
 Always guess the number that is halfway between the

lowest possible value in your search range and the
highest possible value in your search range.

Binary Search
 How can we adapt this strategy to work for search for a

given value in an array?
 Given the array:

 Search for 19
 Where is halfway in between?
 One guess would be (118+2) / 2 = 60

But 60 isn’t in the list and the closest value to 60 is 41 almost at the
end of the list.

 We want the middle INDEX of the array.
 In this case: The lowest index is 0, the highest is 8, so the middle

index is 4!

Index 0 1 2 3 4 5 6 7 8

Value 2 6 19 27 33 37 38 41 118

M

I

D

L

O

W

H

I

Binary Search
 Searching for 19:

 Now we ask,

 Is 19 greater than, or less than, the number at
index 4?

It is Less than, so now we only want to search from
index 0 to index 3.

Index 0 1 2 3 4 5 6 7 8

Value 2 6 19 27 33 37 38 41 118

M

I

D

Binary Search
 Searching for 19:

 The middle of 0 and 3 is 1 (since (3+0)/2 = 1)
 So we look at array[1]

 And ask is 19 greater than or less than 6?
Since it’s greater than 6, we next search halfway

between 2 and 3, which is (2+3)/2 = 2

At index 2, we find 19!

Index 0 1 2 3 4 5 6 7 8

Value 2 6 19 27 33 37 38 41 118

Don’t care about
these anymore!

M

I

D

L

O

W

H

I

L

O

W

M

I

D

Binary Search

Index 0 … … … n/2 … … … n

Value x1 x2 x… x… x… x… x… x… xn

M

I

D

L

O

W

H

I

int binsearch(int array[], int n, int value) {

int low = 0, high = n – 1;

while (low <= high) {

int mid = (low + high)/2;

if (value < array[mid])

high = mid – 1;

else if (value > array[mid])

low = mid + 1;

else

return 1;

}

return 0;

}

Efficiency of Binary Search

 Now, let’s analyze how many comparisons (guesses) are
necessary when running this algorithm on an array of n
items.

 First, let’s try n = 100:
After 1 guess, we have 50 items left,
After 2 guesses, we have 25 items left,
After 3 guesses, we have 12 items left,
After 4 guesses, we have 6 items left,
After 5 guesses, we have 3 items left,
After 6 guesses, we have 1 item left,
After 7 guesses, we have 0 items left.

 The reason we have to list that last iteration is because the
number of items left represent the number of other
possible values to search.
We need to reduce this number to 0!

Also note that when n is odd,
such as when n = 25,
We search the middle element #13,
There are 12 elements smaller than it
and 12 larger,
So the number of items left is
slightly less than 1/2.

Efficiency of Binary Search


Efficiency of Binary Search


Efficiency of Binary Search


Efficiency of Binary Search


Efficiency of Binary Search

 Let’s look at a comparison of a linear search to
a logarithmic search:

n log n

8 3

1024 10

65536 16

1048576 20

33554432 25

1073741824 30

Recursion

COP 3502

Recursive Binary Search

 The iterative code is not the easiest to read, if
we look at the recursive code

 It’s MUCH easier to read and understand

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (!terminating condition){

}

return 0;

}

Recursive Binary Search

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (!terminating condition){

}

return 0;

}

 We need a stopping case:
 We have to STOP the recursion at some point

 Stopping cases:
1. We found the number!
2. Or we have reduced our search range to nothing – the number

wasn’t found 
 ?? The search range would be empty when low > high

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (low <= high){

mid = (low+high)/2;

if (searchVal == values[mid])

return 1;

}

return 0;

}

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (low <= high){

mid = (low+high)/2;

if (searchVal == values[mid])

return 1;

// Otherwise recursively search here

}

return 0;

}

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (low <= high){

mid = (low+high)/2;

if (searchVal == values[mid])

return 1;

else if (searchVal > values[mid])

// Do something else

else

// Do something

}

return 0;

}

Recursive Binary Search
 What are our recursive calls going to be?

 We need to change what low and high are

 So we get the following:

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (low <= high){

mid = (low+high)/2;

if (searchVal == values[mid])

return 1;

else if (searchVal > values[mid])

return binsearch(values, mid+1, high, searchval)

else

return binsearch(values, low, mid-1, searchval);

}

return 0;

}

int binsearch(int *values, int low, int high, int searchVal) {

int mid;

if (low <= high){

mid = (low+high)/2;

if (searchVal == values[mid])

return 1;

else if (searchVal > values[mid])

// Do something else

else

// Do something

}

return 0;

}

Recursive Binary Search

 Binary Search Code summary (using recursion):
 If the value is found,

return 1

 Otherwise
if (searchVal > values[mid])

– Recursively call binsearch to the right

else if (searchVal < values[mid])

– Recursively call binsearch to the left

 If low is ever greater than high

The value is not in the array return 0

Practice Problem

 Write a recursive function that:

 Takes in 2 non-negative integers

 Returns the product

Does NOT use multiplication to get the answer

 So if the parameters are 6 and 4

We get 24

Not using multiplication, we would have to do 6+6+6+6

Practice Problem
 Write a recursive function that:

 Takes in 2 non-negative integers

 Returns the product

Does NOT use multiplication to get the answer

int Multiply(int first, int second) {

if ((second == 0) || (first = 0))

return 0;

else

return (first + Multiply(first, second – 1));

}

