<
SuUCF
RECURSION

COP 3502

What is recursion?

First, let’s talk about circular definitions.

mandiloquy. (1) The conduct of maniloquy between nations; (2) Skill in
doing this.

Recursive definitions are just circular definitions

When we define something recursively we define it in
terms of itself.
But what makes a recursive definition of a
problem X work, is that it shows how to define a
big problem X into simpler versions of X.

Until at some point we reach a sub-problem small
enough that we can solve it directly. @

What is recursion?

Definition: Any time the body of a function
contains a call to the function itself.

For example:
Q" =g * g1
Defines an exponent into a smaller sub-problem,

until we get to the base case that we can solve on its
own:

ay=rl

&

What is recursion?

Since the definition of recursion is —

Any time the body of a function contains a call to the
function itself.

How can we ever finish executing the original function?

What this means is that some calls to the function
MUST NOT result in a recursive call.

Example:

// Pre-conditions: exponent is >= to 0
// Post-conditions: returns bases*ponent

int Power (int base, int exponent) ({

if (exponent == 0)
return 1;
else
return (base*Power (base, exponent - 1);

// Pre-conditions: exponent is >= to 0
// Post-conditions: returns basesxponent

int Power (int base, int exponent) ({

if (exponent == 0)
return 1;
else
return (base*Power (base, exponent - 1);

To convince you that this works, let’s look at an example:
Power(5,2):

Power(5,2) : | | return 5 * Power(5,1) * 5% 5 = 95
Power(5,1) : | | return 5 * Power(5,0) 5 1="5
N
Power(5,0) : | | return 1 1

Trace ;ack up @
A

Using a Stack to Trace Recursive Code

= A stack is a construct that can be used to store and
retrieve items
It works just like a stack of books:

»The last book placed on top is the first one that must be removed.
»OR a Last In, First Out (LIFO) system

Stacks can help us trace recursive functions.
Consider computing Power(8,3)

»>We can put a line of code from our main algorithm as the 15t item
on the stack:

< ¢

Using a Stack to Trace Recursive Code

" Now we need to compute the value of Power(8,3)...

= So the function call Power(8,3) is placed above this
statement in the stack:

Using a Stack to Trace Recursive Code

"= Now we repeat the process...

Using a Stack to Trace Recursive Code

= Again...

Using a Stack to Trace Recursive Code

* Finally, we get:

Now we are ready to
“collapse” the stack!!

Using a Stack to Trace Recursive Code

Using a Stack to Trace Recursive Code

Using a Stack to Trace Recursive Code

Using a Stack to Trace Recursive Code

General Structure of Recursive
Functions

In general,

When we have a problem, we want to break it down into chunks,
where one of the chunks is a smaller version of the same problem.

And eventually, we break down our original problem enough that,
instead of making another recursive call, we can directly return the
answer.

So the general structure of a recursive function has a
couple options:

Break down the problem further, into a smaller sub-
problem

OR
the problem is small enough on its own, solve it

&

General Structure of Recursive
Functions

Here are 2 general constructs of recursive
functions

if
DO FINAL ACTION

)

Take 1 step closer to
} terminating condition

else {
Take 1 step closer to

Call function RECURSIVELY

terminating condition on smaller sub-problem

Call function RECURSIVELY

on smaller sub-problem

While void recursive function use the
this construct.

Typically, functions that return values | Note: These are not the ONLY layouts of &
use this construct. recursive programs, just common ones.

Example using construct 1

Let’s write a function that adds up all the squares of
the numbers from m to n.

That is, given integers m and n, m <= n, we want to find:
SumSquares(m,n) = m? + (m+1)2 + ... + n?

For example: SumSquares(5,10) =
52+62+72+82+92+10%2=355

int SumSquares(int m, int n)

{

Just so we’re on the int 1, sum;
. sum = 0;
same page, let’s write
J i y for (i = m; i <= n; i++)
the iterative function: cum 4= i%i;

return sum;

Example using construct 1

int SumSquares (int m, int n)
{
if () A

return m*m;

}

else {

return m*m + SumSquares (m+1l,n);

Example Using Construct 2

Let’s say we want to create a function that
prints out a chart with the appropriate tips for
meals ranging from first_val to lastval number
of dollars, for every whole dollar amount.

#define TIP RATE 0.15

void Tip Chart(int first val, int last val)

{
if () {
printf (“Ona meal of $%d”, first wval);
printf (“you should tip $%f\n”, firstVal*TIP RATE) ;

Tip Chart(first val + 1, last val);

Recursion

Why use recursion?

Some solutions are naturally recursive.

In these cases there might be less code for a recursive solution,
and it might be easier to read and understand.

Why NOT user recursion?

Every problem that can be solved with recursion can be
solved iteratively.

Recursive calls take up memory and CPU time

Exponential Complexity — calling the Fib function uses 2n function
calls.

Consider performance and software engineering
principles.

&

Recursion Example

Let’s do another example problem — Fibonacci
Sequence
1,1, 2,3,5,8,13, 21, ...

Let’s create a function int Fib (int n)

we return the nth Fibonacci number
Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,

What would our base (or stopping) cases be?
(pping) G

Fibonacci
1,1, 2,3,5, 8, 13, 21, 34, 55, 89, 144, ...

Base (stopping) cases:
Fib(1) = 1
Fib(2) = 1,

Then for the rest of the cases: Fib(n) ="
Fib(n) = Fib(n-1) + Fib(n-2), for n>2

So Fib(9) =7
Fib(8) + Fib(7) = 21 + 13

Recursion - Fibonacci

See if we can program the Fibonacci
example...

