

RECURSION

COP 3502

What is recursion?

First, let's talk about circular definitions.

mandiloquy. (1) The conduct of maniloquy between nations; (2) Skill in doing this.

- Recursive definitions are just circular definitions
 - When we define something recursively we define it in terms of itself.
- But what makes a recursive definition of a problem X work, is that it shows how to define a big problem X into simpler versions of X.
 - Until at some point we reach a sub-problem small enough that we can solve it directly.

What is recursion?

Definition: Any time the body of a function contains a call to the function itself.

- For example:
 - aⁿ = a * aⁿ⁻¹
 - Defines an exponent into a smaller sub-problem,
 until we get to the base case that we can solve on its own:
 - a⁰ = 1

What is recursion?

Since the definition of recursion is —

- Any time the body of a function contains a call to the function itself.
- How can we ever finish executing the original function?
- What this means is that some calls to the function <u>MUST NOT</u> result in a recursive call.
- Example:

```
// Pre-conditions: exponent is >= to 0
// Post-conditions: returns base<sup>exponent</sup>
int Power(int base, int exponent) {
    if (exponent == 0)
        return 1;
    else
        return (base*Power(base, exponent - 1);
```


To convince you that this works, let's look at an example:
 Power(5,2):

- A stack is a construct that can be used to store and retrieve items
 - It works just like a stack of books:
 - The last book placed on top is the first one that must be removed.
 - OR a Last In, First Out (LIFO) system
 - Stacks can help us trace recursive functions.
 - Consider computing Power(8,3)
 - We can put a line of code from our main algorithm as the 1st item on the stack:

- Now we need to compute the value of Power(8,3)...
 - So the function call Power(8,3) is placed above this statement in the stack:

Now we repeat the process...

Power(2nd) b=8, e=2: returns 8*Power(8,1)

Power(1st) b=8, e=3: returns 8*Power(8,2)

Main Algorithm: total = Power(8,3)

Power(2nd) b=8, e=2: returns 8*8

Power(1st) b=8, e=3: returns 8*Power(8,2)

Main Algorithm: total = Power(8,3)

Replaced Power(8,1) with 8

Power(8,2) returned 8*8

/lain Algorithm: total = Power(8,3)

Power(1st) b=8, e=3:

returns 8*64

Power(8,3) returned 8*64

General Structure of Recursive Functions

In general,

- When we have a problem, we want to break it down into chunks, where one of the chunks is a smaller version of the same problem.
- And eventually, we break down our original problem enough that, instead of making another recursive call, we can directly return the answer.
- So the general structure of a recursive function has a couple options:
 - Break down the problem further, into a smaller subproblem
 - OR
 - the problem is small enough on its own, solve it

General Structure of Recursive Functions

Here are 2 general constructs of recursive functions

if	(termination condition) { DO FINAL ACTION
}	
else {	
	Take 1 step closer to
	terminating condition
	Call function RECURSIVELY on smaller sub-problem
}	

if (!termination condition) { Take 1 step closer to terminating condition

> Call function RECURSIVELY on smaller sub-problem

While void recursive function use the this construct.

Typically, functions that return values use this construct.

Note: These are not the ONLY layouts of recursive programs, just common ones.

Example using construct 1

Let's write a function that adds up all the squares of the numbers from m to n.

That is, given integers m and n, m <= n, we want to find:</p>

>SumSquares(m,n) = m² + (m+1)² + ... + n²

For example: SumSquares(5,10) =

 $-5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 = 355$

Just so we're on the same page, let's write the iterative function:

```
int SumSquares(int m, int n)
{
    int i, sum;
    sum = 0;
    for (i = m; i <= n; i++)
        sum += i*i;
    return sum;
}</pre>
```

Example using construct 1

```
int SumSquares(int m, int n)
    if (m == n) {
        return m*m;
    }
    else {
        return m*m + SumSquares(m+1,n);
    }
```


Example Using Construct 2

Let's say we want to create a function that prints out a chart with the appropriate tips for meals ranging from first_val to lastval number of dollars, for every whole dollar amount.

#define TIP RATE 0.15

```
void Tip_Chart(int first_val, int last_val)
{
    if (!(firstVal > lastVal)) {
        printf("Ona meal of $%d", first_val);
        printf("you should tip $%f\n", firstVal*TIP_RATE);
        Tip_Chart(first_val + 1, last_val);
    }
```

Recursion

Why use recursion?

- Some solutions are naturally recursive.
 - In these cases there might be less code for a recursive solution, and it might be easier to read and understand.
- Why NOT user recursion?
 - Every problem that can be solved with recursion can be solved iteratively.
 - Recursive calls take up memory and CPU time
 - Exponential Complexity calling the Fib function uses 2n function calls.
 - Consider performance and software engineering principles.

Recursion Example

- Let's do another example problem Fibonacci Sequence
 - <mark>• 1, 1, 2, 3,</mark> 5, 8, 13, 21, ...

...

- Let's create a function int Fib(int n)
 - we return the nth Fibonacci number
 - Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,
- What would our base (or stopping) cases be?

Fibonacci

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
- Base (stopping) cases:
 - Fib(1) = 1
 - Fib(2) = 1,
- Then for the rest of the cases: Fib(n) = ?
 - Fib(n) = Fib(n-1) + Fib(n-2), for n>2

```
So Fib(9) = ?
```

Fib(8) + Fib(7) = 21 + 13

Recursion - Fibonacci

See if we can program the Fibonacci example...

