
COP 3502

What is recursion?

 First, let’s talk about circular definitions.

 Recursive definitions are just circular definitions
 When we define something recursively we define it in

terms of itself.

 But what makes a recursive definition of a
problem X work, is that it shows how to define a
big problem X into simpler versions of X.
 Until at some point we reach a sub-problem small

enough that we can solve it directly.

mandiloquy. (1) The conduct of maniloquy between nations; (2) Skill in
doing this.

What is recursion?

 Definition: Any time the body of a function
contains a call to the function itself.

 For example:

 an = a * an-1

Defines an exponent into a smaller sub-problem,

until we get to the base case that we can solve on its
own:

 a0 = 1

What is recursion?

 Since the definition of recursion is –
 Any time the body of a function contains a call to the

function itself.
 How can we ever finish executing the original function?

 What this means is that some calls to the function
MUST NOT result in a recursive call.

 Example:
// Pre-conditions: exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}

What is recursion?
// Pre-conditions: exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}

Power(5,2) : return 5 * Power(5,1)

return 5 * Power(5,0)Power(5,1) :

return 1Power(5,0) :

Trace back up

1

5 * 1 = 5

5* 5 = 25

 To convince you that this works, let’s look at an example:
 Power(5,2):

Using a Stack to Trace Recursive Code

 A stack is a construct that can be used to store and
retrieve items

 It works just like a stack of books:

The last book placed on top is the first one that must be removed.

OR a Last In, First Out (LIFO) system

 Stacks can help us trace recursive functions.

 Consider computing Power(8,3)

We can put a line of code from our main algorithm as the 1st item
on the stack:

Using a Stack to Trace Recursive Code

 Now we need to compute the value of Power(8,3)…

 So the function call Power(8,3) is placed above this
statement in the stack:

Using a Stack to Trace Recursive Code

 Now we repeat the process…

Using a Stack to Trace Recursive Code

 Again…

Using a Stack to Trace Recursive Code

Now we are ready to
“collapse” the stack!!

Power(8,0) returned 1

 Finally, we get:

Using a Stack to Trace Recursive Code

Replaced Power(8,0) with 1

Power(8,1) returned 8*1

Using a Stack to Trace Recursive Code

Replaced Power(8,1) with 8

Power(8,2) returned 8*8

Using a Stack to Trace Recursive Code

Replaced Power(8,2) with 64

Power(8,3) returned 8*64

Using a Stack to Trace Recursive Code

General Structure of Recursive
Functions

 In general,
When we have a problem, we want to break it down into chunks,

where one of the chunks is a smaller version of the same problem.

And eventually, we break down our original problem enough that,
instead of making another recursive call, we can directly return the
answer.

 So the general structure of a recursive function has a
couple options:
 Break down the problem further, into a smaller sub-

problem

 OR

 the problem is small enough on its own, solve it

General Structure of Recursive
Functions

 Here are 2 general constructs of recursive
functions

if (termination condition) {

DO FINAL ACTION

}

else {

Take 1 step closer to

____terminating condition

Call function RECURSIVELY

____on smaller sub-problem

}

if (!termination condition) {

___Take 1 step closer to

____terminating condition

Call function RECURSIVELY

____on smaller sub-problem

}

Typically, functions that return values
use this construct.

While void recursive function use the
this construct.

Note: These are not the ONLY layouts of
recursive programs, just common ones.

Example using construct 1

 Let’s write a function that adds up all the squares of
the numbers from m to n.

That is, given integers m and n, m <= n, we want to find:

SumSquares(m,n) = m2 + (m+1)2 + … + n2

For example: SumSquares(5,10) =
– 52 + 62 + 72 + 82 + 92 + 102 = 355

int SumSquares(int m, int n)

{

int i, sum;

sum = 0;

for (i = m; i <= n; i++)

sum += i*i;

return sum;

}

 Just so we’re on the
same page, let’s write
the iterative function:

Example using construct 1

int SumSquares(int m, int n)

{

if (termination condition) {

DO FINAL ACTION

}

else {

Take 1 step closer to

____ terminating condition

Call function RECURSIVELY ____

________on smaller sub-problem

}

}

int SumSquares(int m, int n)

{

if (termination condition) {

DO FINAL ACTION

}

else {

return m*m + SumSquares(m+1,n);

}

}

int SumSquares(int m, int n)

{

if (m == n) {

DO FINAL ACTION

}

else {

return m*m + SumSquares(m+1,n);

}

}

int SumSquares(int m, int n)

{

if (m == n) {

return m*m;

}

else {

return m*m + SumSquares(m+1,n);

}

}

Example Using Construct 2
 Let’s say we want to create a function that

prints out a chart with the appropriate tips for
meals ranging from first_val to lastval number
of dollars, for every whole dollar amount.

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!termination condition) {

___ Take 1 step closer to

____ terminating condition

Call function RECURSIVELY

____ on smaller sub-problem

}

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!(firstVal > lastVal)) {

___ Take 1 step closer to

____ terminating condition

Call function RECURSIVELY

____ on smaller sub-problem

}

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!(firstVal > lastVal)) {

___ printf(“Ona meal of $%d”, first_val);

printf(“you should tip $%f\n”, firstVal*TIP_RATE);

Call function RECURSIVELY

____ on smaller sub-problem

}

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!(firstVal > lastVal)) {

___ printf(“Ona meal of $%d”, first_val);

printf(“you should tip $%f\n”, firstVal*TIP_RATE);

Tip_Chart(first_val + 1, last_val);

}

}

Recursion

 Why use recursion?
 Some solutions are naturally recursive.

 In these cases there might be less code for a recursive solution,
and it might be easier to read and understand.

 Why NOT user recursion?
 Every problem that can be solved with recursion can be

solved iteratively.
 Recursive calls take up memory and CPU time

Exponential Complexity – calling the Fib function uses 2n function
calls.

 Consider performance and software engineering
principles.

Recursion Example

 Let’s do another example problem – Fibonacci
Sequence

 1, 1, 2, 3, 5, 8, 13, 21, …

 Let’s create a function int Fib(int n)

 we return the nth Fibonacci number

 Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,
…

 What would our base (or stopping) cases be?

Fibonacci

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

 Base (stopping) cases:
 Fib(1) = 1
 Fib(2) = 1,

 Then for the rest of the cases: Fib(n) = ?
 Fib(n) = Fib(n-1) + Fib(n-2), for n>2

 So Fib(9) = ?
 Fib(8) + Fib(7) = 21 + 13

Recursion - Fibonacci

 See if we can program the Fibonacci
example…

