SUUCF

RECURSION

COP 3502

What is recursion?

- First, let's talk about circular definitions.

> mandiloquy. (1) The conduct of maniloquy between nations; (2) Skill in doing this.

- Recursive definitions are just circular definitions
- When we define something recursively we define it in terms of itself.
- But what makes a recursive definition of a problem X work, is that it shows how to define a big problem X into simpler versions of X.
- Until at some point we reach a sub-problem small enough that we can solve it directly.

What is recursion?

- Definition: Any time the body of a function contains a call to the function itself.
- For example:
- $a^{n}=a^{*} a^{n-1}$
$>$ Defines an exponent into a smaller sub-problem,
$>$ until we get to the base case that we can solve on its own:
- $a^{0}=1$

What is recursion?

- Since the definition of recursion is -
- Any time the body of a function contains a call to the function itself.
- How can we ever finish executing the original function?
- What this means is that some calls to the function MUST NOT result in a recursive call.
- Example:

```
// Pre-conditions: exponent is >= to 0
// Post-conditions: returns base exponent
int Power(int base, int exponent) {
```

```
if (exponent == 0)
```

if (exponent == 0)
return 1;
return 1;
else
else
return (base*Power (base, exponent - 1);

```
    return (base*Power (base, exponent - 1);
```

\}

```
// Pre-conditions: exponent is >= to 0
// Post-conditions: returns base exponent
int Power(int base, int exponent) {
```

```
if (exponent == 0)
```

if (exponent == 0)
return 1;
return 1;
else
return (base*Power(base, exponent - 1);
}

```

To convince you that this works, let's look at an example:
- Power(5,2):
Power(5,2) :
    return 1
5* \(5=25\)
\(5 * 1=5\)

\section*{Using a Stack to Trace Recursive Code}

A stack is a construct that can be used to store and retrieve items
- It works just like a stack of books:
\(>\) The last book placed on top is the first one that must be removed.
\(>\) OR a Last In, First Out (LIFO) system
- Stacks can help us trace recursive functions.
- Consider computing Power(8,3)
\(>\) We can put a line of code from our main algorithm as the \(1^{\text {st }}\) item on the stack:


\section*{Using a Stack to Trace Recursive Code}
- Now we need to compute the value of \(\operatorname{Power}(8,3)\)...
- So the function call Power( 8,3 ) is placed above this statement in the stack:


\section*{Using a Stack to Trace Recursive Code}

Now we repeat the process...


\section*{Using a Stack to Trace Recursive Code}
- Again...


\section*{Using a Stack to Trace Recursive Code}

Finally, we get:

\section*{Using a Stack to Trace Recursive Code}


\section*{General Structure of Recursive}

\section*{Functions}
- In general,
\(>\) When we have a problem, we want to break it down into chunks, where one of the chunks is a smaller version of the same problem.
\(>\) And eventually, we break down our original problem enough that, instead of making another recursive call, we can directly return the answer.
- So the general structure of a recursive function has a couple options:
- Break down the problem further, into a smaller subproblem
- OR
- the problem is small enough on its own, solve it

\section*{General Structure of Recursive Functions}
- Here are 2 general constructs of recursive functions
```

if (termination condition) {
DO FINAL ACTION
}
else {
Take 1 step closer to terminating condition
Call function RECURSIVELY on smaller sub-problem

```
if (!termination condition) {
    Take 1 step closer to
    terminating condition
```

Call function RECURSIVELY on smaller sub-problem

While void recursive function use the this construct.

Typically, functions that return values use this construct.

Note: These are not the ONLY layouts of recursive programs, just common ones.

Example using construct 1

Let's write a function that adds up all the squares of the numbers from m to n.
$>$ That is, given integers m and $n, m<=n$, we want to find:
$>$ SumSquares $(\mathrm{m}, \mathrm{n})=\mathrm{m}^{2}+(\mathrm{m}+1)^{2}+\ldots+\mathrm{n}^{2}$
$>$ For example: SumSquares $(5,10)=$

$$
-5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}=355
$$

```
int SumSquares(int m, int n)
{
int i, sum;
sum = 0;
```

```
for (i =m; i <= n; i+t)
```

for (i =m; i <= n; i+t)
sum += i*i;

```
    sum += i*i;
```

return sum;

Example using construct 1

```
int SumSquares(int m, int n)
{
    if (m == n) {
        return m*m;
    }
    else {
        return m*m + SumSquares (m+1,n);
    }
}
```


Example Using Construct 2

- Let's say we want to create a function that prints out a chart with the appropriate tips for meals ranging from first_val to lastval number of dollars, for every whole dollar amount.

```
#define TIP_RATE 0.15
```

void Tip_Chart(int first_val, int last_val)
\{
if (! (firstVal > lastVal)) \{
printf("Ona meal of \$\%d", first_val);
printf("you should tip \$\%f\n", firstVal*TIP_RATE);
Tip_Chart(first_val + 1, last_val);
\}
\}

Recursion

- Why use recursion?
- Some solutions are naturally recursive. $>$ In these cases there might be less code for a recursive solution, and it might be easier to read and understand.
- Why NOT user recursion?
- Every problem that can be solved with recursion can be solved iteratively.
- Recursive calls take up memory and CPU time
> Exponential Complexity - calling the Fib function uses $2 n$ function calls.
- Consider performance and software engineering principles.

Recursion Example

- Let's do another example problem - Fibonacci Sequence
- $1,1,2,3,5,8,13,21$, ...
- Let's create a function int Fib (int n)
- we return the nth Fibonacci number
- $\operatorname{Fib}(1)=1, \operatorname{Fib}(2)=1, \operatorname{Fib}(3)=2, \operatorname{Fib}(4)=3, \operatorname{Fib}(5)=5$,
- What would our base (or stopping) cases be?

Fibonacci

- $1,1,2,3,5,8,13,21,34,55,89,144, \ldots$
- Base (stopping) cases:
- $\operatorname{Fib}(1)=1$
- $\operatorname{Fib}(2)=1$,
- Then for the rest of the cases: $\operatorname{Fib}(\mathrm{n})=$?
- $\operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$, for $n>2$
- So Fib(9) = ?
- $\operatorname{Fib}(8)+\operatorname{Fib}(7)=21+13$

Recursion - Fibonacci

- See if we can program the Fibonacci example...

