
COP 3502

What is recursion?

 First, let’s talk about circular definitions.

 Recursive definitions are just circular definitions
 When we define something recursively we define it in

terms of itself.

 But what makes a recursive definition of a
problem X work, is that it shows how to define a
big problem X into simpler versions of X.
 Until at some point we reach a sub-problem small

enough that we can solve it directly.

mandiloquy. (1) The conduct of maniloquy between nations; (2) Skill in
doing this.

What is recursion?

 Definition: Any time the body of a function
contains a call to the function itself.

 For example:

 an = a * an-1

Defines an exponent into a smaller sub-problem,

until we get to the base case that we can solve on its
own:

 a0 = 1

What is recursion?

 Since the definition of recursion is –
 Any time the body of a function contains a call to the

function itself.
 How can we ever finish executing the original function?

 What this means is that some calls to the function
MUST NOT result in a recursive call.

 Example:
// Pre-conditions: exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}

What is recursion?
// Pre-conditions: exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

if (exponent == 0)

return 1;

else

return (base*Power(base, exponent – 1);

}

Power(5,2) : return 5 * Power(5,1)

return 5 * Power(5,0)Power(5,1) :

return 1Power(5,0) :

Trace back up

1

5 * 1 = 5

5* 5 = 25

 To convince you that this works, let’s look at an example:
 Power(5,2):

Using a Stack to Trace Recursive Code

 A stack is a construct that can be used to store and
retrieve items

 It works just like a stack of books:

The last book placed on top is the first one that must be removed.

OR a Last In, First Out (LIFO) system

 Stacks can help us trace recursive functions.

 Consider computing Power(8,3)

We can put a line of code from our main algorithm as the 1st item
on the stack:

Using a Stack to Trace Recursive Code

 Now we need to compute the value of Power(8,3)…

 So the function call Power(8,3) is placed above this
statement in the stack:

Using a Stack to Trace Recursive Code

 Now we repeat the process…

Using a Stack to Trace Recursive Code

 Again…

Using a Stack to Trace Recursive Code

Now we are ready to
“collapse” the stack!!

Power(8,0) returned 1

 Finally, we get:

Using a Stack to Trace Recursive Code

Replaced Power(8,0) with 1

Power(8,1) returned 8*1

Using a Stack to Trace Recursive Code

Replaced Power(8,1) with 8

Power(8,2) returned 8*8

Using a Stack to Trace Recursive Code

Replaced Power(8,2) with 64

Power(8,3) returned 8*64

Using a Stack to Trace Recursive Code

General Structure of Recursive
Functions

 In general,
When we have a problem, we want to break it down into chunks,

where one of the chunks is a smaller version of the same problem.

And eventually, we break down our original problem enough that,
instead of making another recursive call, we can directly return the
answer.

 So the general structure of a recursive function has a
couple options:
 Break down the problem further, into a smaller sub-

problem

 OR

 the problem is small enough on its own, solve it

General Structure of Recursive
Functions

 Here are 2 general constructs of recursive
functions

if (termination condition) {

DO FINAL ACTION

}

else {

Take 1 step closer to

____terminating condition

Call function RECURSIVELY

____on smaller sub-problem

}

if (!termination condition) {

___Take 1 step closer to

____terminating condition

Call function RECURSIVELY

____on smaller sub-problem

}

Typically, functions that return values
use this construct.

While void recursive function use the
this construct.

Note: These are not the ONLY layouts of
recursive programs, just common ones.

Example using construct 1

 Let’s write a function that adds up all the squares of
the numbers from m to n.

That is, given integers m and n, m <= n, we want to find:

SumSquares(m,n) = m2 + (m+1)2 + … + n2

For example: SumSquares(5,10) =
– 52 + 62 + 72 + 82 + 92 + 102 = 355

int SumSquares(int m, int n)

{

int i, sum;

sum = 0;

for (i = m; i <= n; i++)

sum += i*i;

return sum;

}

 Just so we’re on the
same page, let’s write
the iterative function:

Example using construct 1

int SumSquares(int m, int n)

{

if (termination condition) {

DO FINAL ACTION

}

else {

Take 1 step closer to

____ terminating condition

Call function RECURSIVELY ____

________on smaller sub-problem

}

}

int SumSquares(int m, int n)

{

if (termination condition) {

DO FINAL ACTION

}

else {

return m*m + SumSquares(m+1,n);

}

}

int SumSquares(int m, int n)

{

if (m == n) {

DO FINAL ACTION

}

else {

return m*m + SumSquares(m+1,n);

}

}

int SumSquares(int m, int n)

{

if (m == n) {

return m*m;

}

else {

return m*m + SumSquares(m+1,n);

}

}

Example Using Construct 2
 Let’s say we want to create a function that

prints out a chart with the appropriate tips for
meals ranging from first_val to lastval number
of dollars, for every whole dollar amount.

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!termination condition) {

___ Take 1 step closer to

____ terminating condition

Call function RECURSIVELY

____ on smaller sub-problem

}

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!(firstVal > lastVal)) {

___ Take 1 step closer to

____ terminating condition

Call function RECURSIVELY

____ on smaller sub-problem

}

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!(firstVal > lastVal)) {

___ printf(“Ona meal of $%d”, first_val);

printf(“you should tip $%f\n”, firstVal*TIP_RATE);

Call function RECURSIVELY

____ on smaller sub-problem

}

#define TIP_RATE 0.15

void Tip_Chart(int first_val, int last_val)

{

if (!(firstVal > lastVal)) {

___ printf(“Ona meal of $%d”, first_val);

printf(“you should tip $%f\n”, firstVal*TIP_RATE);

Tip_Chart(first_val + 1, last_val);

}

}

Recursion

 Why use recursion?
 Some solutions are naturally recursive.

 In these cases there might be less code for a recursive solution,
and it might be easier to read and understand.

 Why NOT user recursion?
 Every problem that can be solved with recursion can be

solved iteratively.
 Recursive calls take up memory and CPU time

Exponential Complexity – calling the Fib function uses 2n function
calls.

 Consider performance and software engineering
principles.

Recursion Example

 Let’s do another example problem – Fibonacci
Sequence

 1, 1, 2, 3, 5, 8, 13, 21, …

 Let’s create a function int Fib(int n)

 we return the nth Fibonacci number

 Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,
…

 What would our base (or stopping) cases be?

Fibonacci

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

 Base (stopping) cases:
 Fib(1) = 1
 Fib(2) = 1,

 Then for the rest of the cases: Fib(n) = ?
 Fib(n) = Fib(n-1) + Fib(n-2), for n>2

 So Fib(9) = ?
 Fib(8) + Fib(7) = 21 + 13

Recursion - Fibonacci

 See if we can program the Fibonacci
example…

