<
SUCF
HEAPS

COP 3502

Binary Heaps

Binary heaps are used for two purposes:
Priority Queues
Heap sort

Binary Heaps

Priority Queue

A priority queue is where you always extract the item
with the highest priority next.

Priority Queue Example

Let’s say we are Google and we want an efficient way
to do determine which applicant from our applicant
pool to interview when a new position opens up.

So we assign a priority based on a particular formula —
including application arrival time, GPA, and
understanding of Heaps, ironically enough.

&

Binary Heaps

* How could we implement this using our existing
methods?

We don’t want just a normal queue, because that’s FIFO,
doesn’t care about a priority value.

We could use a linked list sorted by priority.

»Then we would have a long insertion time for insert, because we
have to traverse the list to find where our element goes.

Priority: 5 s Priority: 10 Priority: 100 Priority: 200

This isn’t necessary, because all we care about is the ne>§l
applicant to interview, not that the list is sorted. N

Binary Heaps

* Consider a minimum binary heap:

Looks similar to a binary search tree

BUT all the values stored in the subtree rooted at a
node are greater than or equal to the value stored at

the node. g,

Binary Heaps

The only operations we need are:
> Insert and RemoveMin

»We can implement a heap using a complete binary tree or
an array as we will talk about later.

»>No matter how we implement it, we will visualize the data_
structure as a tree, like the one above. &1

Insert

" Since we want a
complete binary tree

We insert the new
node into the next
empty spot

Filling each level from
left to right

Then we need to
worry about where
this node should
move to depending on

Its priority. g}

Insert

* The problem isin all likelihood,
if the insertion is done in this
location, the heap property will
not be maintained.

* Thus, you must do the following
"Percolate Up" procedure:

If the parent of the newly
inserted node is greater than the
inserted value, swap the two of
them.

This is a single "Percolate Up"
step.

Now, continue this process until
the inserted node 's parent
stores a number lower than it.

Insert

* Percolate Up:

If the parent of the newly inserted node is greater than the
inserted value, swap the two of them.

Now, continue this process until the inserted node 's parent
stores a number lower than it.

* Array Implementation:

Heap Implementation

Instead of using a binary tree implementation,

We can use an array implementation where the children of
the node at index i are the nodes at indices 2i and 2i+1.

index 1 2 3 4 5 6 7
node g 35 5 200 100 10 45
Steph | Sally | sarah | Otto | Ken | Mags Al

Delete Minimum

Delete the min
(which is always the
root), and return:

e

Now we need to
replace it, but with
what?

> Replace with the last
element in the array,
or the last node
added to the tree.

Then Percolate
Down.

Percolate Down:

If the children of this node
has children less than it

swap it with the MIN of its 2 children,

until the node has children
that are larger than it.

&

Runtime of heap operations

Insert

Shown on the board
DeleteMin

Shown on the board

Heapify

Bottom up heap construction

Shown on the board

Heapsort

Shown on the board

Heap Implementation

Insert
Percolate Up

Shown on the board

