
Heaps

COP 3502

Binary Heaps

 Binary heaps are used for two purposes:

 Priority Queues

 Heap sort

Binary Heaps

 Priority Queue
 A priority queue is where you always extract the item

with the highest priority next.

 Priority Queue Example
 Let’s say we are Google and we want an efficient way

to do determine which applicant from our applicant
pool to interview when a new position opens up.

 So we assign a priority based on a particular formula –
including application arrival time, GPA, and
understanding of Heaps, ironically enough.

Binary Heaps
 How could we implement this using our existing

methods?
 We don’t want just a normal queue, because that’s FIFO,

doesn’t care about a priority value.

 We could use a linked list sorted by priority.
Then we would have a long insertion time for insert, because we

have to traverse the list to find where our element goes.

 This isn’t necessary, because all we care about is the next
applicant to interview, not that the list is sorted.

Priority: 5
Name: Sarah

Priority: 100
Name: Ken

Priority: 10
Name: Mags

Priority: 200
Name: Otto

Binary Heaps

 Consider a minimum binary heap:

 Looks similar to a binary search tree

 BUT all the values stored in the subtree rooted at a
node are greater than or equal to the value stored at
the node.

5
Sarah

100
Ken

10
Mags

200
Otto

Binary Heaps

 The only operations we need are:

Insert and RemoveMin

We can implement a heap using a complete binary tree or
an array as we will talk about later.

No matter how we implement it, we will visualize the data
structure as a tree, like the one above.

5
Sarah

100
Ken

10
Mags

200
Otto

Insert

 Since we want a
complete binary tree
 We insert the new

node into the next
empty spot

 Filling each level from
left to right

 Then we need to
worry about where
this node should
move to depending on
its priority.

5
Sarah

100
Ken

10
Mags

200
Otto

Insert

 The problem is in all likelihood,
if the insertion is done in this
location, the heap property will
not be maintained.

 Thus, you must do the following
"Percolate Up" procedure:
 If the parent of the newly

inserted node is greater than the
inserted value, swap the two of
them.

 This is a single "Percolate Up"
step.

 Now, continue this process until
the inserted node 's parent
stores a number lower than it.

5
Sarah

100
Ken

10
Mags

200
Otto

35
Sally
100
Ken

35
Sally

Insert
 Percolate Up:
 If the parent of the newly inserted node is greater than the

inserted value, swap the two of them.

 Now, continue this process until the inserted node 's parent
stores a number lower than it.

5

Sarah

35
Sally

10
Mags

200
Otto

100
Ken

2
Steph

10
Mags

2
Steph

5
Sarah

2
Steph

45
Al

Heap Implementation
 Array Implementation:

 Instead of using a binary tree implementation,

 We can use an array implementation where the children of
the node at index i are the nodes at indices 2i and 2i+1.

index 0 1 2 3 4 5 6 7 …n

node X 5

Sarah

35

Sally

10

Mags

200

Otto

100

Ken

10

Mags

5
Sarah

35
Sally

10
Mags

200
Otto

100
Ken

2
Steph

10
Mags

2
Steph

5
Sarah

2
Steph

45
Al

2

Steph

2

Steph

10

Mags

2

Steph

5

Sarah

45

Al

Delete Minimum
 Delete the min

(which is always the
root), and return:

 Now we need to
replace it, but with
what?

Replace with the last
element in the array,
or the last node
added to the tree.

 Then Percolate
Down.

35
Sally

200
Otto

100
Ken

10
Mags

5
Sarah

2
Steph

45
Al

2
Steph

Percolate Down:
If the children of this node
has children less than it
swap it with the MIN of its 2 children,
until the node has children
that are larger than it.

45
Al
5

Sarah

45
Al

10
Mags

45
Al

Runtime of heap operations

 Insert

 Shown on the board

 DeleteMin

 Shown on the board

Heapify

 Bottom up heap construction

 Shown on the board

Heapsort

 Shown on the board

Heap Implementation

 Insert

 Percolate Up

 Shown on the board

