

QUICK SORT

COP 3502

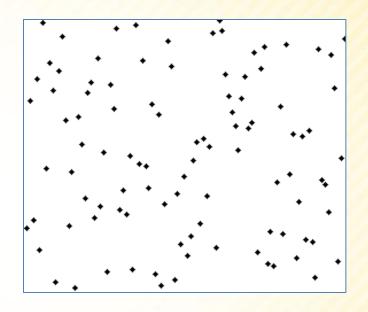
Motivation of Sorting

 Sorting algorithms contain interesting and important ideas for code optimization as well as algorithm design.

Merge Sort

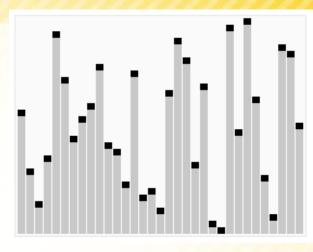
- Last time we talked about Merge Sort
 - Recursively calls: MergeSort(1st half of list) MergeSort(2nd half of list)

Then Merges results



Quick Sort

This probably the most common sort used in practice, since it is usually the quickest in practice.



 It uses the idea of a partition, without using an additional array, and recursion to achieve this efficiency.

QuickSort

- Basically the partition works like this:
 - Given an array of n values you must randomly pick an element in the array to partition by.

- Once you have picked this value, compare all of the rest of the elements to this value.
 - If they are greater, put them to the "right" of the partition element.
 - If they are *less*, put them to the *"left"* of the partition element.



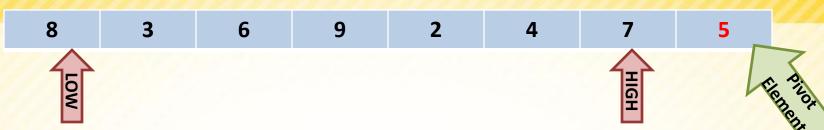
QuickSort

- Thus, similar to MergeSort, we can use a partition to break the sorting problem into 2 smaller sorting problems.
 - QuickSort at a general level:
 - 1) Partition the array with respect to a random element.
 - 2) Sort the left part of the array, using Quick Sort.
 - 3) Sort the right part of the array, using Quick Sort.

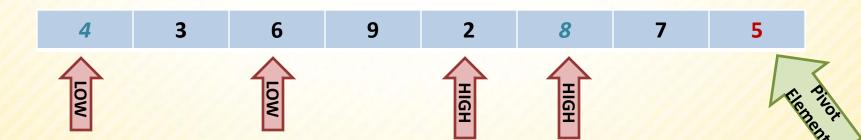
QuickSort

- It should be clear that this algorithm will work
 - But it may not be clear why it is faster than MergeSort.
 - Like MergeSort it recursively solves 2 sub problems and requires linear additional work.
 - BUT unlike MergeSort the sub problems are NOT guaranteed to be of equal size.
- The reason that QuickSort is faster is that the partitioning step can actually be performed in place and very efficiently.
 - This efficiency can more than make up for the lack of equiparts sized recursive calls.

How to Partition in Place



- Assume for now, that we partition based on the last element in the array, 5.
 - Start 2 counters: Low at array index 0 High at 2nd to last index in the array
 - Advance the Low counter forward until a value greater than the pivot is encountered.
 - Advance the High counter backward until a value less than the pivot is encountered.



Nowting the advance the, counters as before the solution the "wrong" side.

How to Partition in Place

SWAP

When both counters line up, SWAP the last element with the counter position to finish the partition.

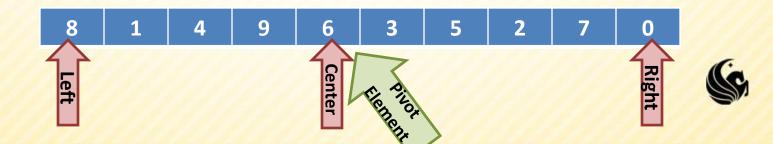
Now as you can see our array is partitioned into a "left" and a "right".

Picking the Pivot

- Although the Partition algorithm works no matter which element is chosen as the pivot, some choices are better than others.
 - Wrong Choice:
 - Just use the first element in the list
 - If the input is random, this is acceptable.
 - BUT, what if the list is already sorted or in reverse order?
 - » Then all the elements go into S1 or S2, consistently throughout recursive calls.
 - So it would take O(n²) to do nothing at all! (If presorted)
 - » EMBARRASSING!

Picking the Pivot

- A Safer Way
 - Choose the pivot randomly
 - Generally safe, since it's unlikely the random pivot would consistently be a poor partition.
 - Random number generation is generally expensive.
- Median-of-Three Partitioning
 - The best choice would be the median of the array.
 - But that would be hard to calculate and slow.
 - A good estimate is to pick 3 elements and use the median of those as the pivot.
 - The rule of thumb: Pick the left, center, and right elements and take the median as the pivot.



Analysis of Quicksort

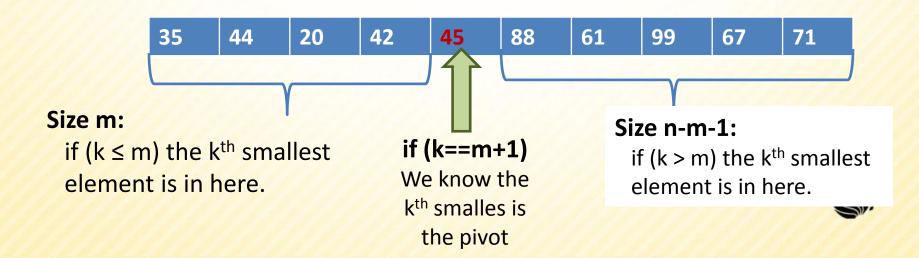
Shown on the board

Quickselect

- Given an array of n elements, determine the kth smallest element.
 - Clearly k must lie in between 1 and n inclusive
 - The selection problem is different, but related to the sorting problem.

Quickselect

- Given an array of n elements, determine the kth smallest element.
- The idea is:
 - Partition the array.
 - There are 2 subarrays:
 - \geq One of size *m*, with the *m* smallest elements.
 - The other of size n-m-1.
 - If $\underline{k \leq m}$, we know the <u> k^{th} </u> smallest element is in the <u>1st partition</u>.
 - If <u>k == m+1</u>, we know the <u>kth</u> smallest element <u>IS the pivot</u>.
 - Otherwise, the <u>kth</u> smallest element is in the <u>2nd partition</u>.



Quickselect

Algorithm:

Quickselect(A, low, high, k):

- m=Partition(A, low, high) // m is how many values are less than the partition element.
- 2) if k≤m, return Quickselect(low, low+m-1, k)
- 3) if k==m+1 return the pivot, A[low+m]
- 4) else return Quickselect(low+m+1, high, k-m-1)
- So instead of doing 2 recursive calls, w only make one here.
 - It turns out that on average Quickselect takes O(n) time, which is far better than it's worst case performace of O(n²) time.

Quickselect Analysis

Shown on the board

