
Quick Sort

COP 3502

Motivation of Sorting

 Sorting algorithms contain interesting and
important ideas for code optimization as
well as algorithm design.

Merge Sort

 Last time we talked
about Merge Sort

 Recursively calls:
MergeSort(1st half of list)

 MergeSort(2nd half of list)

 Then Merges results

Quick Sort
 This probably the most

common sort used in
practice, since it is usually
the quickest in practice.

 It uses the idea of a partition, without

using an additional array, and recursion to
achieve this efficiency.

QuickSort

 Basically the partition works like this:

 Given an array of n values you must randomly pick an element in
the array to partition by.

 Once you have picked this value, compare all of the rest of the

elements to this value.
 If they are greater, put them to the “right” of the partition element.

 If they are less, put them to the “left” of the partition element.

So if we sort those 2 sides the whole array will be sorted.

88 35 44 99 71 20 45 42 67 61

35 44 20 42 45 88 61 99 67 71

Still need to be sorted Still need to be sorted In the right
spot
:D

QuickSort

 Thus, similar to MergeSort, we can use a partition to break
the sorting problem into 2 smaller sorting problems.

 QuickSort at a general level:

1) Partition the array with respect to a random element.

2) Sort the left part of the array, using Quick Sort.

3) Sort the right part of the array, using Quick Sort.

QuickSort

 It should be clear that this algorithm will work

 But it may not be clear why it is faster than MergeSort.

 Like MergeSort it recursively solves 2 sub problems and
requires linear additional work.

 BUT unlike MergeSort the sub problems are NOT guaranteed
to be of equal size.

 The reason that QuickSort is faster is that the
partitioning step can actually be performed in
place and very efficiently.
 This efficiency can more than make up for the lack of equal

sized recursive calls.

How to Partition in Place
8 3 6 9 2 4 7 5

LO
W

H
IG

H

 Assume for now, that we partition based on the last element in the
array, 5.
 Start 2 counters: Low at array index 0 High at 2nd to last index in the array

 Advance the Low counter forward until a value greater than the pivot
is encountered.

 Advance the High counter backward until a value less than the pivot is
encountered.

8 3 6 9 2 4 7 5

LO
W

H
IG

H

 Now, swap these 2 elements, since we know that they are
both on the “wrong” side.

4 3 6 9 2 8 7 5

 Continue to advance the counters as before.

LO
W

H
IG

H

How to Partition in Place

SWAP

4 3 6 9 2 8 7 5

LO
W

H
IG

H

4 3 2 9 6 8 7 5

LO
W

H
IG

H

When both counters line up, SWAP the last element with the
counter position to finish the partition.

4 3 2 5 6 8 7 9

Now as you can see our array is partitioned into a “left” and a
“right”.

Picking the Pivot

 Although the Partition algorithm works no
matter which element is chosen as the pivot,
some choices are better than others.
 Wrong Choice:
Just use the first element in the list

– If the input is random, this is acceptable.

– BUT, what if the list is already sorted or in reverse order?

» Then all the elements go into S1 or S2, consistently
throughout recursive calls.

– So it would take O(n2) to do nothing at all! (If presorted)

» EMBARRASSING!

Picking the Pivot

 A Safer Way
 Choose the pivot randomly

Generally safe, since it’s unlikely the random pivot would
consistently be a poor partition.

Random number generation is generally expensive.

 Median-of-Three Partitioning
 The best choice would be the median of the array.

But that would be hard to calculate and slow.
A good estimate is to pick 3 elements and use the median

of those as the pivot.
The rule of thumb: Pick the left, center, and right elements

and take the median as the pivot.

8 1 4 9 6 3 5 2 7 0

Left

C
e

n
te

r

R
igh

t

Analysis of Quicksort

 Shown on the board

Quickselect

 Given an array of n elements, determine the kth
smallest element.

 Clearly k must lie in between 1 and n inclusive

 The selection problem is different, but related to the
sorting problem.

Quickselect
 Given an array of n elements, determine the kth smallest element.

 The idea is:
 Partition the array.
 There are 2 subarrays:

One of size m, with the m smallest elements.
The other of size n-m-1 .

– If k ≤ m, we know the kth smallest element is in the 1st partition.
– If k == m+1, we know the kth smallest element IS the pivot.
– Otherwise, the kth smallest element is in the 2nd partition.

35 44 20 42 45 88 61 99 67 71

Size m:
 if (k ≤ m) the kth smallest
 element is in here.

if (k==m+1)
We know the
kth smalles is

the pivot

Size n-m-1:
 if (k > m) the kth smallest
 element is in here.

Quickselect

 Algorithm:
Quickselect(A, low, high, k):

1) m=Partition(A, low, high) // m is how many values are less
than the partition element.

2) if k≤m, return Quickselect(low, low+m-1, k)
3) if k==m+1 return the pivot, A[low+m]
4) else return Quickselect(low+m+1, high, k-m-1)

 So instead of doing 2 recursive calls, w only make one
here.

 It turns out that on average Quickselect takes O(n) time, which
is far better than it’s worst case performace of O(n2) time.

Quickselect Analysis

 Shown on the board

