
Merge Sort

COP 3502

Introduction

 Last class we covered Insertion Sort, Bubble Sort, and
Selection Sort.
 In these algorithms we end up making a significant number

of possible comparisons and swaps between elements.
 All of these have a worst and average case performance of

O(n2).

 Is there a more clever, quicker way to sort numbers
that does not require looking at most possible pairs of
numbers?

 Today we will talk about MergeSort that uses recursion
and a clever idea in sorting two separately sorted
arrays.

The Merge

 The merging of two sorted lists is a tool we
can use in Merge Sort.

 Say you are given 2 arrays, each of which is
already sorted.

 Now your job is to efficiently combine the 2 arrays
into 1 larger one which contains all of the values
of the 2 smaller arrays in sorted order.

The Merge
 The essential idea is this:
Array 1:

Array 2:

Merged:

1) Keep track of the smallest value in each array that hasn’t been placed
in order in the larger array yet.

2) Compare these two smallest values from each array. Place the
smallest of the two values in the next location in the larger array.

3) Adjust the smallest value for the appropriate array.
4) Continue this process until all values have been placed in the large

array.

 What does this remind you of? We talked about an
algorithm that combines 2 sorted lists of names…
 Sorted List Matching Problem

2 7 16 44 55 89

minA

1 6 9 13 15 49

minB

1

1 6 9 13 15 49

minB minB

Example on the Board

 Complete last example of merge on the board.

Merge Sort
 How can we use the Merge function to sort an entire

array, since we we’re merging special arrays where
the 1st and 2nd halves were already sorted?

 The main idea:
1) Sort the first half of the array, using merge sort.
2) Sort the second half of the array, using merge sort.
3) Now, we do have a situation to use the Merge algorithm.

Simply merge the first half of the array with the second
half.

 So all of the actual sorting gets done in the Merge
method.

 Let’s do an example to demonstrate this.

Merge Sort void MergeSort(int values[], int start, int end) {

 int mid;

 if (start < end) { // Check if more than 1 element

 mid = (start+end)/2;

 MergeSort(values, start, mid); // Sort 1st half

 MergeSort(values, mid+1, end); // Sort 2nd half

 Merge(values, start, mid+1, end);

 }

} 38 27 43 3

38 27

38

43 3

27 43 3

M
e

rge

27 38 3 43

M
e

rge

M
e

rge

3 27 38 43

Merge Sort Analysis

 Shown on the board

Practice Problem

Initial 3 6 8 1 7 4 5 2

Sorted

Show contents of the array after each merge occurs in
the process of Merge-Sorting the array below:

