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Motivation 

 We have to store some records and perform 
the following: 
 add new records 

 delete records 

 search a record by key 

 

 

 

 Find a way to do these efficiently! 

key 

record 

Other fields  
containing 
associated data 
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Record Example 

9903030 

0056789 

0012345 
0033333 

tom 

david 

andy 
betty 

73 

56.8 

81.5 
90 

pid (key) name score 

9908080 bill 49 

... 

Consider this problem.  We want to store 1,000 
student records and search them by student id. 

... 
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Existing Data Structures 

 Use an array to store the records, in unsorted order 
 add - add the records as the last entry, very fast O(1) 
 delete a target - slow at finding the target, fast at filling the 

hole (just take the last entry) O(n) 
 search - sequential search, slow O(n) 

 Use an array to store the records, keeping them in 
sorted order 
 add - insert the record in proper position, much record 

movement, slow O(n) 
 delete a target - how to handle the hole after deletion? 

Much record movement, slow O(n) 
 search - binary search, fast O(log n) 
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Existing Data Structures 

 Binary Search Tree: 

 add: insert the record in proper position, fast 
O(logn) 

 delete a target: fast O(logn) 

 search: fast O(logn) 
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Direct Access Table 

: 
33333 

: 
12345 

0 
: 

: 
betty 

: 
andy 

: 

: 
90 
: 

81.5 
: 

name score 

56789 david 56.8 

: 
9908080 

: 
: 

: 
bill 

: 
: 

: 
49 
: 
: 

9999999 

One way is to store the records in 
a huge array (index 0..9999999)  
The index is used as the student id, 
i.e. the record of the student with 
pid 0012345 is stored at A[12345] 
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Direct Access Table 

 Pros: 

 add- very fast O(1) 

 delete – very fast O(1) 

 search – very fast O(1) 

 Cons: 

 Waste a lot of memory.  

 Use a table of TEN MILLION entries to store ONE 
THOUSAND records.  

8 



Hash Function 

Imagine that we have such a magic 
function Hash.  It maps the key (sid) 
of the 1000 records into the integers 
0..999, one to one.  No two different 
keys maps to the same number. 

H(‘0012345’) = 134 
H(‘0033333’) = 67 
H(‘0056789’) = 764 
… 
H(‘9908080’) = 3 

function Hash(key): integer; 

hash code 
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Hash Table 

: 
betty 

: 
bill 

: 

: 
90 
: 

49 
: 

name score 

andy 81.5 

: 
: 

david 
: 

: 
: 

56.8 
: 

: 
0033333 

: 
9908080 

: 

0012345 

: 
: 

0056789 
: 

3 

67 

0 

764 

999 

134 

To store a record, we 
compute Hash(pid) for 
the record and store it 
at the location Hash(pid) 
of the array.   

To search for a 
student, we only need 
to peek at the location 
Hash(target sid). 

H(‘0012345’) = 134 
H(‘0033333’) = 67 
H(‘0056789’) = 764 
… 
H(‘9908080’) = 3 
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Hash Table with Perfect Hash 

 Such magic function is called perfect hash 

 add – very fast O(1) 

 delete – very fast O(1) 

 search – very fast O(1) 

 But it is generally difficult to design perfect 
hash. (e.g. when the potential key space is 
large) 
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Cost Summary 

Worst Case Average Case 

Implementation Search Insert Delete Search Insert Delete 

Sorted Array log N N N log N N/2 N/2 

Unsorted Array N 1 N N/2 1 N/2 

Binary Search Tree N N N log N log N log N 

Hash Table w/ Perfect 
Hash 

1 1 1 1 1 1 
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Issues in hashing 

 Each hash should generate a unique number. If 
two different items produce the same hash code 
we have a collision in the data structure. Then 
what? 

 To deal with collisions, two issues must be 
addressed: 
1. Hash functions must minimize collisions (there are 

strategies to do this). 

2. When collisions do occur, we must know how to 
handle them. 
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Collision Resolution 

 Focus on issue #2 (collision resolution): 
 Assume the following hash function is a reasonably good 

one:  

h(k) = k%1000 (hash code = last 3 digits) 
 Two ways to resolve collisions: 
 Open Addressing: every hash table entry contains only 

one key. If a new key hashes to a table entry which is filled, 
systematically examine other table entries until you find 
one empty entry to place the new key. 
Linear Probing 
Quadratic Probing 

 Separate Chaining: every hash table entry contains a 
pointer to a linked list of keys that hash to the same entry.  
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Open Addressing 

 Store all keys in the hash table itself. 
 Each slot contains either a key or NULL. 
 To search for key k: 

 Compute h(k) and examine slot h(k).  
 Examining a slot is known as a probe. 
 Case 1: If slot h(k) contains key k, the search is successful.  
     Case 2: If this slot contains NULLL, the search is unsuccessful. 
 Case 3: There’s a third possibility, slot h(k) contains a key that is 

not k.  
    We compute the index of some other slot, based on k and on 

which probe (count from 0: 0th, 1st, 2nd, etc.) we’re on. Keep 
probing until we either find key k (successful search) or we find 
a slot holding NULL (unsuccessful search). 
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How to compute probe sequences 

 Linear probing: Given auxiliary hash function h, the 
probe sequence starts at slot h(k) and continues 
sequentially through the table, wrapping after slot m − 
1 to slot 0. Given key k and probe number i (0 ≤ i < m),  

     h(k, i ) = (h(k) + i ) mod m, m is the size of the table. 

 Quadratic probing: As in linear probing, the probe 
sequence starts at h(k). Unlike linear probing, it 
examines cells 1,4,9, and so on, away from the original 
probe point:  

     h(k, i ) = (h(k) + i 2) mod m      
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Open Addressing Example 

 Three students: 

 <0000001, A, 81.3> 

 <0001001, B, 92.5> 

 <0002001, C, 99.0> 

 Hash codes: 

 h(0000001) = 1%1000 = 1 

 h(0001001) = 1001%1000 = 1 

 h(0002001) = 2001%1000 = 1 
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Linear Probing: h(k, i ) = (h(k) + i ) mod m.  

 In linear probing, 
collisions are 
resolved by 
sequentially scanning 
an array (with 
wraparound) until an 
empty cell is found.  

 

C 
B 
A 

99.0 
92.5 
81.3 

name score 

… … 
0002001 
0001001 
0000001 

… 

2 

0 
1 

3 

999 

Action # probe 
Store A 1 
Store B 2 
Store C 3 i h(k, i) 

0 1 
1 2 
2 3 

h(k) = 1 
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A 81.3 0000001 
B 92.5 0001001 
C 99.0 0002001 



Linear Probing Example 

 Let’s say the next value to store, 352, hashed to location 3. 

 

 We see a value is stored there, so what do we do? 

 

 Now, if we want to search for 352? 
 

 When do we know that we can stop searching for a value with 
this method? 
 When we hit an empty location. 
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Index 0 1 2 3 4 5 6 7 8 9 

Value 173 281 461 352 



Linear Probing Example 

 Linear Probing Example (Shown on the board) 



Quadratic Probing: h(k, i ) = (h(k) + i 2) mod m 

 Quadratic probing 
eliminates the primary 
clustering problem of linear 
probing by examining 
certain cells away from the 
original probe point. 

C 

B 
A 

99.0 

92.5 
81.3 

name score 

… … 
0002001 

0001001 
0000001 

… 

2 

0 
1 

3 

999 

4 
5 

Action # probe 
Store A 1 
Store B 2 
Store C 3 

i h(k, i) 
0 1 
1 2 
2 5 

h(k) = 1 
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C 

B 
A 

99.0 

92.5 
81.3 

0002001 

0001001 
0000001 



Quadratic Probing Example 
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Index 0 1 2 3 4 5 6 7 8 9 

Value 173 281 461 

 Let’s say the next value to store, 352, hashed to location 3. 

 

 We see a value is stored there, so what do we do? 

 

 Now, if we want to search for 352? 
 

 When do we know that we can stop searching for a value with 
this method? 
 When we hit an empty location. 

352 



An Issue with Quadratic Probing 

 For a hash table of size m, after  m probes, all 
array elements should have been examined.  

 This is true for Linear Probing, but NOT always 
true for Quadratic Probing (Why?) 

 Insertion in Quadratic Probing: How do we know 
that eventually we will find a "free" location in 
the array, instead of looping around all filled 
locations? 
 if the table size is prime, AND the table is at least half 

empty, quadratic probing will always find an empty 
location. 
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Dynamic Table Expansion 

 What if we don’t know how many records we'll 
have to store in a hash table before we set it up? 

 Expand the hash table: 

1. Pick a prime number that is approximately twice as 
large as the current table size. 

2. Use this number to change the hash function. 

3. Rehash ALL the values already stored in the table. 

4. Now, hash the value to be stored in the table. 
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Separate Chaining 

2 

4 

1 
0 

3 
nil 
nil 
nil 

nil 

5 

nil 

: 

999 Key: 0002001 
name: C 
Score: 99.0 

 
 
 
An array of linked lists. 
Insert new items to 
the front of the 
corresponding linked 
list. 
 
 
 

Key: 0000001 
name: A 
Score: 81.3 

Key: 0001001 
name: B 
Score:92.5 
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Separate Chaining 

 Good hash function, appropriate hash size:  

 Few collisions. Add, delete, search very fast O(1) 

 Otherwise… 

 some hash value has a long list of collided records 

 add - just insert at the head fast O(1) 

 delete a target - delete from unsorted linked list 
slow O(n) 

 search - sequential search slow O(n) 

 

26 



Summary 

 A data structure to support (add, delete, search) 
operations efficiently. 

 Hash table includes an array and a hash function. 
 Properties of a good hash function: 
 simple and quick to calculate 
 even distribution, avoid collision as much as possible 

 Collision Resolution: 
 Open Addressing: 

Linear Probing 
Quadratic Probing 

 Separate Chaining 
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The Hash Function 
 Designing a good hash function 

 Let’s say we were storing Strings, we want the 
hash function to map an arbitrary String to an 
integer in the range of the hash table array. 

 

 Example: 

 F(w) = ascii value of the first character of w 

 Why is this a poor choice? 

1) It’s designed for an array of only size 26.  (Or maybe 
bigger if we allow non-alphabetic) 

2) More words start with certain letters than others. 28 



The Hash Function 

 What if we used the following function: 
 f(c0c1…cn) = (ascii(c0) + ascii(c1) +…+ ascii(cn)) 

 

 The problem is even if the table size is big, even 10,000, then the 
highest value an 8 letter string could hash to is 8*127 = 1016.   

 Then you would NOT use nearly 90% of the hash locations at all. 

 Resulting in many collisions. 



The Hash Function 

 Another idea in the book: 
 Each character has an ascii value less than 128.  Thus, 

a string could be a representation of a number in base 
128.   

 For example the string “dog” would hash to: 
ascii(‘d’)*1280 + ascii(‘o’)1281 + ascii(‘g’)*1282 =  
100*1 + 111*128 + 103*1282 = 1701860 

 
 What are the problems with this technique? 

1) small strings map to HUGE integers 
2) Just computing this function may cause an overflow. 
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The Hash Function 
 How can we deal with these problems? 
 Using the mod operator 

f(c0c1…cn) = (ascii(c0)*1280 + ascii(c1)*1281 +…+ ascii(cn)*128n ) mod tablesize 

 

 We can still get an overflow if we mod at the end. 

 So we can use Horner’s rule: 
Specifies how to evaluate a polynomial without calculating xn 

in that polynomial directly: 

cnxn + cn-1xn-1 + ... c1x + c0 =c0 + x(c1 + x(c2 + ... + x(cn-1 + xcn)...)) 

 
(ascii(c0)*1280 + ascii(c1)*1281 +...+ ascii(cn)*128n) = 

ascii(c0) + 128(ascii(c1) + 128(ascii(c2) + ...+(128(ascii(cn-1) + 128 ascii(cn))...)) 
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(ascii(c0)*1280 + ascii(c1)*1281 +...+ 
ascii(cn)*128n) = 

 

ascii(c0) + 128(ascii(c1) + 128(ascii(c2) + 
...+(128(ascii(cn-1) + 128 ascii(cn))...)) 
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