
Binary Search Trees

Deletion

COP 3502

Binary Search Tree - Deletion

 Let’s consider several cases for Deletion:

1) Deleting a Leaf node

2) Deleting a node with 1 child

3) Deleting a node with 2 children

 For all cases we have to

 identify the parent.

6

5 10

3 8 12

1 4 7 9 11 13

9 13

Binary Search Tree - Deletion

 Deleting a leaf node

 Let’s say we want to delete 3

Find the parent of 3
– which is 5

Then what?

free(parent->left);

parent->left = NULL;

or if it’s a right leaf node:

free(parent->right);

parent->right= NULL;

6

5 9

3

parent

Binary Search Tree - Deletion

 Deleting node with 1 child

 Let’s say we want to delete 5

We need to find the parent

AND the sole child

Then connect them

temp = parent->left;

child = temp->left;

parent->left = child;

free(temp);

6

5 9

3 7 12

1 4

parent

child

temp

Binary Search Tree - Deletion

 Deleting a node with 2
children:

 In order to maintain the
BST property , we can
replace the deleted node
with either:

Max in the left subtree

OR Min in the right subtree

6

5 10

3 8 12

1 4 7 9 11 13

9

Binary Search Tree Deletion
 In aiding in Deletion, we will want several auxiliary

functions:
1) node* parent(node* root)
 Finds the parent of a given node in a binary tree.

2) node* minVal(node* root), node* maxVal(node* root)
 Finds the minimum (or maximum) value in a given binary tree.

3) int isLeaf(node* root)
 Determines if a node is a leaf node or not.

4) int hasOnlyLeftChild(node* root),
 int hasOnlyRightChild(node* root)
 Determines if a node ONLY has a left (or right) child or not.

5) node* findNode(node* root)
 Returns a pointer to a node in a given tree that stores a particular

value.

node* delete(node* root, int value) {

 node *delnode, *parent;

 // Get a pointer to the node to delete.

 delnode = findNode(root, value);

 // Get the parent of this node.

 parent = parent(root, delnode);

 // Case 1: the node to delete is a leaf node.

 if (isLeaf(delnode)) {...}

 // Case 2: node to be deleted only has a left child.

 if (hasOnlyLeftChild(delnode)) {...}

 // Case 3: node to be deleted only has a right child.

 if (hasOnlyRightChild(delnode)) {...}

 // Case 4: the node has 2 children

 else {...}

}

Binary Search Tree Deletion

 Fill in the code together in class for the Delete
function.

