
Binary Trees

COP 3502

Trees

 We’ve already seen lists of linked nodes
 But the problem was that it took a long time to get to

an arbitrary node in a linked list.

 It would be nice if we had a linked structure where
nodes were more easily accessible.

 A tree is a widely used data structure that has a
hierarchical set of linked nodes.
 If you think of a tree with branches

And each point where branches intersect as a node

You find a structure with a huge number of nodes, but
where each path is not too long.

Trees

 A tree is a widely used data structure that has a
hierarchical set of linked nodes.
 We have several ways of referring to nodes:

Biological (Root, leaves)
Familial(Parent and child)
Directional (Right Left)

Root

Leaves

Internal Nodes Parent

Child

Left Right

Binary Tree

 A binary tree is a data structure in which each node
has at most 2 child nodes

 So these are examples of binary trees

5

3 7

8 6 2 4

5

3 7

8 2

5

3

8

5

Binary Trees

 A leaf node has no children.

5

3 7

8 6

root

leaf

leaf leaf

5

root

leaf

Binary Trees

 A Binary Tree is full if each node is either a leaf or has exactly two
child nodes.

 A Binary Tree is complete if all levels except possibly the last are
completely full, and the last level has all its nodes to the left side.

5

3 7

2 4

8 6

Full but not
Complete

5

3 7

8 6 2

Complete
but not Full 5

7

5

3 7

Complete
AND Full

Neither

Binary Tree Height

 The root is at level (or height) 0
 The level of any other node is 1

more than the level of its parent
 Total # of nodes n is

 n = 2h+1 -1 (maximum)
 For example, if h = 3
 The max nodes in a complete

tree is:
 n = 24 – 1 = 15

 Height of the tree h,
 if there are n nodes:

 h = log2((n+1)/2)
 If we have 15 nodes
 h = log2(16/2)
 = log2 (8) = 3

a

d f

c i s r

b g h q m l k z

Level 0

Level 1

Level 2

Level 3

Binary Tree Node

 A node of a binary tree is
very similar to a node in a
linked list.

 Except instead of having 1
field as a pointer field,

 we should have 2 pointer
fields – a left and a right.

struct node {

 int data;

 struct node *left;

 struct node *right

};

left data right

Binary Trees

 To declare an empty binary tree:
 struct node *root = NULL;

 To add a single node to the tree, we could do:
 root =

 (struct node*)malloc(sizeof(struct node));

 root->data = 10;

 root->left = NULL;

 root->right = NULL;

NULL

root

10

N
U

LL

N
U

LL

root

Traversing a Binary Tree

 In a linked list we could traverse starting with the
head and stopping when we got to NULL.
 We can’t really do that in a binary tree
Things are not so trivial for a tree.

 We will have to turn to our good old friend
 Recursion

 (Note: we’re covering traversing a tree before we
cover inserting into a tree, so let’s assume we already
have an existing tree.)

Traversing a Binary Tree

 Consider the 3 components of a binary tree:
1) A node (the root node)

2) A left subtree

3) A right subtree

 What we notice is that we can treat each subtree as
a binary tree with

1) A root node

2) A left subtree

3) A right subtree

This is where the recursion comes in, we’ll traverse each
subtree recursively.

5

3 7

8 6 2 4

3 7

8 6 2 4

Traversing a Binary Tree

 The 3 components of a binary tree:
1) A node (the root node)
2) A left subtree
3) A right subtree

 We can traverse these 3 components in any
order we want
 Typically though the left is always traversed

before the right.
 This leaves us 3 options then:

1) Root, Left, Right – Pre-Order Traversal
2) Left, Root, Right – In-Order Traversal
3) Left, Right, Root – Post-Order Traversal

5

3 7

8 6 2 4

3 7

8 6 2 4

Inorder Binary Tree Traversal

 An inorder tree traversal visits the 3 parts of a tree
in this order:
1) left subtree
2) root node
3) right subtree
 Here is a function that would print each node in a tree

using an Inorder traversal:

void Inorder(struct node *curr)

if (curr != NULL) {

 Inorder(curr->left);

 printf("%d ", curr->data);

 Inorder(curr->right);

 }

}

This traversal is the most common because
it is typically used to go through a sorted
list in order stored in a binary tree.

Inorder Binary Tree Traversal

 We’ll show an example Inorder traversal on the
board in class.

Preorder Binary Tree Traversal

 A preorder tree traversal visits the 3 parts of a tree
in this order:
1) root node
2) left subtree
3) right subtree
 Here is a function that would print each node in a tree

using a Preorder traversal:

void Preorder(struct node *curr)

if (curr != NULL) {

 printf("%d ", curr->data);

 Preorder(curr->left);

 Preorder(curr->right);

 }

}

Inorder Binary Tree Traversal

Postorder Binary Tree Traversal

 A postorder tree traversal visits the 3 parts of a tree in
this order:
1) left subtree
2) right subtree
3) root node

 Here is a function that would print each node in a tree

using a Postorder traversal:
 void Postorder(struct node *curr)

if (curr != NULL) {

 Postorder(curr->left);

 Postorder(curr->right);

 printf("%d ", curr->data);

 }

}

Inorder Binary Tree Traversal

 We’ll show an example Inorder traversal on the
board in class.

Binary Search Tree

 Even though we now know how to traverse a binary
tree
 it’s not clear how a binary tree can benefit us…
 but what if we added a restriction to a binary tree?

 Consider the following binary tree:

5

2 9

1 4 7 12

 What patterns are true about
each node in the tree?
 For each node N all the

values in the left subtree
are LESS than the value in
node N.

 And the values in the right
subtree are GREATER than
the value stored in N.

Binary Search Tree
 Binary Search Tree property:
 For each node N all the values in the left subtree are

LESS than the value in node N.
 And the values in the right subtree are GREATER than

the value stored in N.
 5

2 9

1 4 7 12

 Why might this property
be a desirable one?
 It’s going to make

searching much easier!
 Rather than “looking”

both directions after
checking a node, we
know EXACTLY which
direction to go.

Notice the Binary Search Tree Property holds
true recursively, so if we look at the left subtree
as a separate tree the property holds, and
same for the right.

Binary Search Tree

 Searching a Binary Search Tree:

 Let’s see if we can come up with

 the code given the following

 algorithm.

5

2 9

1 4 7 12

int Find(struct node *curr, int val) {

 // 1) if the tree is NULL, return false

 // 2) Check root node, if we find val return true!

 // 3) else if the val is less than root’s value,

 // recursively search the left subtree

 // 4) else recursively search in the right subtree.

}

