
Stack & Queues

COP 3502

Stacks

 A stack is a data structure that
stores information arranged like a
stack.
 We have seen stacks before when

we used a stack to trace through
recursive programs.

 The essential idea is that the last
item placed into the stack is the
first item removed from the stack
 Or LIFO(Last In, First Out) for short.

15

7

23

2 TOP

Stacks

 Stacks:
 Stacks are an Abstract Data Type

They are NOT built into C

 So we must define them and their behaviors

 Stack behavior:
 A data structure that stores information in the form of

a stack.
Contains any number of elements of the same type.

 Access policy:
The last item placed on the stack is the first item removed

from the stack.

Stacks

 Stacks:
 Basic Operations: PUSH and POP
PUSH – PUSH an item on the top of the stack.

 PUSH

15

7

23

2 TOP

19

15

7

23

2

19 TOP

(Stack before Push Operation) (Stack after Push Operation)

Stacks
 Stacks:
 Basic Operations: PUSH and POP
POP – POP off the item in the stack and return it.

POP

15

7

23

2

19 TOP

15

7

23

2 TOP

(Stack after Pop Operation) (Stack before Pop Operation)

19 Element removed:

Stacks

 Stacks:

 Other useful operations:

empty – typically implemented as a boolean function
that returns true if no items are in the stack.

full – returns true if no more items can be added to the
stack.

– In theory a stack should never be full, but any actual
implementation has a limit on the # of elements it can store.

top – simply returns the value stored at the top of the
stack without popping it off the stack.

Stacks

 Simple Example:

 PUSH(7)

 PUSH(3)

 PUSH(2)

 POP

 POP

 PUSH(5)

 POP

7

3

2

5

Stacks

 On Monday we used stacks to:
1) Convert infix expressions to postfix expressions

2) Evaluate postfix expressions

 Infix: 2 * 3 + 5 + 3 * 4

 Postfix: 2 3 * 5 + 3 4 * +
The operator follows all of its operands

Reduces computer memory access and utilizes the stack
to evaluate expressions.

No parentheses are necessary

Still used by some calculators.

Stack Implementation

 Last class we talked about 2 types of stack
implementations – Array and Linked List

 Array Implementation:
 When we initialize the array,
 There are no items in the stack, so what is top set to in

the initialize function?
-1

 What if we push(10), then what is top?
0

 What if we pop(), then what is top?
-1

 For all of these operations we either access top + 1, or
top
so all operations are O(1) (we don’t have to traverse the array.)

struct stack {

 int items[SIZE];

 int top;

};

Stack Implementation

 Linked List Implementation

 Notice that we don’t have a ‘top’

 Why?

The top will ALWAYS be the first node

And we don’t need to worry about the size since it’s a
linked list that can expand while there’s heap memory
available.

So we only need to either add an element to the front or
take an element off of the front

– The runtime for either operation is O(1)

struct stack {

 int data;

 struct stack *next;

};

Stack – Linked List Implementation
 Why do we use double pointers?

 If we want to be able to return a 0 or a 1 if a Push
is successful,

We can’t return the address of the new front of the list
(which is what we would usually do with a linked list)

 So we’ll pass a pointer to the front of the list
(stack **front)

and then if we modify (*front) in the Push function we
are changing not the local value of the pointer,

but we’re changing the contents of the pointer in the
same memory address that was passed from main so
those changes will be reflected in main.

Stack Application

 We did 2 examples last time:

1) Reading in a list of numbers from a user and
printing it in backwards order.

We also talked about reading in each character of a
string and printing it out in backwards order.

2) Checking if we have matching parentheses

Queues
 If we wanted to simulate customers waiting in a line

to be served,

 We wouldn’t use a stack…

LIFO is only going to make the person that got in line first mad.

Queues
 We would want to use FIFO

 First In First Out, or 1st in line 1st one to get served.

 Instead of push and pop, we have the operations

 Enqueue and Dequeue that add/remove elements
from the list.

Queue Basic Operations

 Enqueue:
 Inserts an element at the back of the queue
 Returns 1 if successful, 0 otherwise.

 Dequeue:
 Removes the element at the front of the queue.
 Returns the removed element.

 Peek
 Looks at the element at the front of the queue without removing it.
 Returns the front element.

 isEmpty
 Checks to see if the queue is empty.
 Returns true or false.

 isFull
 Checks to see if the queue is full.
 Returns true or false.

Queue Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

Queues - Array Implementation

 What would we need for an array
implementation?

 We need an array obviously

 And we need to keep track of the front and the back.

BAD Queue Implementation
Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

front back

back

back

back

back

front

front

front

front

Notice that you have to
Shift the contents of the
Array over each time front
changes

Queues: Array Implementation

 We will use the following revamped idea to
store our queue structure:

 Keep track of the array, the front, and the current
number of elements.

struct queue {

 int *elements;

 int front;

 int numElements;

};

Queues: Array Implementation

 Enqueue:

 We’ll simply add the given element to the index
“back” in the array.

 BUT we’re not storing “back”!!!!!

 What must we do instead?

Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

struct queue {

 int *elements;

 int front;

 int numElements;

};

9 11 13 15
front

numElements = 4

Queues: Array Implementation

 Enqueue(17):

 Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

Front = 2, plus numElements = 4, gives us 6

We can mod by the queueSize

(front + numElements) % queueSize = 0

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 4 17 numElements = 5

Queues: Array Implementation

 So we’re allowing our array to essentially wrap
around.

 This way we don’t have to copy the contents of
our array over if front or back moves

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17

Queues: Array Implementation

 Dequeue

 If the numElements > 0

numElements--;

front = (front + 1) % queueSize

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17
front

numElements = 4

Queues - Dynamically Allocated
Array Implementation

 What if our numElements == queueSize?

 We can realloc more memory for our array and
update queueSize!

 But we also need to make sure we copy over the
wraparound values correctly.

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

Queues - Linked List Implementation

 We are going to need a
linked list
 So we’ll use the same node

implementation as before.

 But we’ll need to keep track
of the front and the back.
 Otherwise either enqueue or

dequeue would require an
O(n) traversal each time.

 So we’ll keep a front and
back pointer inside of a
structure called queue.

struct node {

 int data;

 struct node *next;

};

struct queue {

 struct node *front;

 struct node *back;

};

