" &
SuUCF
STACK & QUEUES

COP 3502

Stacks

= A stackis a data structure that
stores information arranged like a
stack.

We have seen stacks before when
we used a stack to trace through
recursive programs.
*" The essential idea is that the last
item placed into the stack is the
first item removed from the stack

Or LIFO(Last In, First Out) for short.

N

Stacks

Stacks:

Stacks are an Abstract Data Type
They are NOT built into C

So we must define them and their behaviors

Stack behavior:

A data structure that stores information in the form of
a stack.

Contains any number of elements of the same type.
Access policy:
The last item placed on the stack is the first item removed

from the stack. ’
&

Stacks

= Stacks:

= Basic Operations: PUSH and POP
»PUSH — PUSH an item on the top of the stack.

o *
TOP

TOP

(Stack before Push Operation) (Stack after Push Operatimﬁ

Stacks
= Stacks:

= Basic Operations: PUSH and POP
»POP — POP off the item in the stack and return it.

/ POP Element removed:_
| TOP

TOP

(Stack before Pop Operation) (Stack after Pop Operation) &

Stacks

Stacks:

Other useful operations:

empty — typically implemented as a boolean function
that returns true if no items are in the stack.

full — returns true if no more items can be added to the
stack.

In theory a stack should never be full, but any actual
implementation has a limit on the # of elements it can store.

top — simply returns the value stored at the top of the
stack without popping it off the stack.

&

Stacks

= Simple Example:
= PUSH(7)
= PUSH(3)
= PUSH(2)
= POP
= POP
= PUSH(5)
= POP

Stacks

On Monday we used stacks to:

Convert infix expressions to postfix expressions
Evaluate postfix expressions

Infix: 2*3+5+3*4
Postfix: 23*5+34* +

The operator follows all of its operands

Reduces computer memory access and utilizes the stack
to evaluate expressions.

No parentheses are necessary
Still used by some calculators. @

Stack Implementation

struct stack {
int items[SIZE];
int top;

Last class we talked about 2 tyy
implementations — Array and L

Array Implementation:
When we initialize the array,

There are no items in the stack, so what is top set to in
the initialize function?

-1
What if we push(10), then what is top?
0
What if we pop(), then what is top?
-1
For all of these operations we either access top + 1, or

top %
so all operations are O(1) (we don’t have to traverse the array.ﬁ

Stack Implementation

struct stack {

int data;

f g] struct stack *next;
Linked List Implementation %

Notice that we don’t have a ‘top’
Why?
The top will ALWAYS be the first node

And we don’t need to worry about the size since it’s a

linked list that can expand while there’s heap memory
available.

So we only need to either add an element to the front or
take an element off of the front

The runtime for either operation is O(1)

&

Stack — Linked List Implementation

Why do we use double pointers?

If we want to be able toreturna 0O oralif aPush

is successful,
We can’t return the address of the new front of the list
(which is what we would usually do with a linked list)

So we’ll pass a pointer to the front of the list

(stack **front)
and then if we modify (*front) in the Push function we
are changing not the local value of the pointer,

but we’re changing the contents of the pointer in the
same memory address that was passed from main so
those changes will be reflected in main.

Stack Application

We did 2 examples last time:

Reading in a list of numbers from a user and
printing it in backwards order.

We also talked about reading in each character of a
string and printing it out in backwards order.

Checking if we have matching parentheses

Queues

" If we wanted to simulate customers waiting in a line
to be served,

We wouldn’t use a stack...
»LIFO is only going to make the person that got in line first mad.

Queues

= We would want to use FIFO

First In First Out, or 1%t in line 15t one to get served.

" Instead of push and pop, we have the operations

Enqueue and Dequeue that add/remove elements
from the list.

Queue Basic Operations

Enqueue:
Inserts an element at the back of the queue
Returns 1 if successful, O otherwise.

Dequeue:
Removes the element at the front of the queue.
Returns the removed element.

Peek
Looks at the element at the front of the queue without removing it.
Returns the front element.

iIsEmpty
Checks to see if the queue is empty.
Returns true or false.

isFull
Checks to see if the queue is full.

Returns true or false. &
A

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

Queue Example

(3 1517 [9 [11]

front back

5 [7]9]11]13]
[5 [7]9 [21]13]15]

TIME

vi b W N

OPERATION
Enqueue(13)
Dequeue()
Enqueue(15)
Dequeue()

Dequeue()

%

Queues - Array Implementation

What would we need for an array
implementation?

We need an array obviously
And we need to keep track of the front and the back.

BAD Queue Implementation

Example

Starting
Queue: 3 5 7 9 |11

front back
Time1: | 3 5 7 9 |11 13

front back
Time2: | 5 7 9 (11 13

front back
Time 3: 5 7 9 (11|13 | 15

front back
Time4: | 7 9 (11|13 | 15

front back
Time5: | 9 | 11|13 | 15

front back

TIME OPERATION
1 Enqueue(13)
2 Dequeue()
3 Enqueue(15)
i} Dequeue()
5 Dequeue()

Notice that you have to
Shift the contents of the
Array over each time front
changes

&

Queues: Array Implementation

struct queue {
int *elements;

int front;
int numElements;

We will use the following revamped idea to
store our queue structure:

Keep track of the array, the front, and the current
number of elements.

Queues: Array Implementation

struct queue {
int *elements;
int front;

int numElements;

Enqueue: b

We'll simply add the given element to the index
“back” in the array.

What must we do instead?
Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

numElements = 4 9 11| 13 | 15

front @

Queues: Array Implementation

struct queue {
int *elements;
int front;

int numElements;
int queueSize;

Enqueue(17):
Add it to the index: front + numElements
But what if this goes outside the bounds of our array?
Front = 2, plus numElements = 4, gives us 6

We can mod by the queueSize
(front + numElements) % queueSize = 0

numElements =5 17 9 111113 ! 15 .
front @

Queues: Array Implementation

struct queue {
int *elements;
int front;
int numElements;
int queueSize;

}i
So we’re allowing our array to essentially wrap
around.

This way we don’t have to copy the contents of
our array over if front or back moves

numElements =5 17 9 111113 ! 15 .
front @

Queues: Array Implementation

struct queue {
int *elements;
int front;

int numElements;
int queueSize;

Dequeue

If the numElements >0
numElements--;
front = (front + 1) % queueSize

numElements = 4 17 11| 13 | 15 .
front front @

Queues - Dynamically Allocated
Array ImpleeEmrey

int *elements;
int front;
int numElements;

int queueSize;

}i
What if our numElements == queueSize?

We can realloc more memory for our array and
update queueSize!

But we also need to make sure we copy over the
wraparound values correctly.

&

Queues - Linked List Implementation

struct node {

We are going to need a int data;

linked list struct node *next;
So we’ll use the same node B
implementation as before. struct queue {

But we’ll need to keep track struct node *front;

of the front and the back. struct node *back;

Otherwise either enqueue or };
dequeue would require an
O(n) traversal each time.

So we’ll keep a front and
back pointer inside of a
structure called queue.

