
Stack & Queues

COP 3502

Stacks

 A stack is a data structure that
stores information arranged like a
stack.
 We have seen stacks before when

we used a stack to trace through
recursive programs.

 The essential idea is that the last
item placed into the stack is the
first item removed from the stack
 Or LIFO(Last In, First Out) for short.

15

7

23

2 TOP

Stacks

 Stacks:
 Stacks are an Abstract Data Type

They are NOT built into C

 So we must define them and their behaviors

 Stack behavior:
 A data structure that stores information in the form of

a stack.
Contains any number of elements of the same type.

 Access policy:
The last item placed on the stack is the first item removed

from the stack.

Stacks

 Stacks:
 Basic Operations: PUSH and POP
PUSH – PUSH an item on the top of the stack.

 PUSH

15

7

23

2 TOP

19

15

7

23

2

19 TOP

(Stack before Push Operation) (Stack after Push Operation)

Stacks
 Stacks:
 Basic Operations: PUSH and POP
POP – POP off the item in the stack and return it.

POP

15

7

23

2

19 TOP

15

7

23

2 TOP

(Stack after Pop Operation) (Stack before Pop Operation)

19 Element removed:

Stacks

 Stacks:

 Other useful operations:

empty – typically implemented as a boolean function
that returns true if no items are in the stack.

full – returns true if no more items can be added to the
stack.

– In theory a stack should never be full, but any actual
implementation has a limit on the # of elements it can store.

top – simply returns the value stored at the top of the
stack without popping it off the stack.

Stacks

 Simple Example:

 PUSH(7)

 PUSH(3)

 PUSH(2)

 POP

 POP

 PUSH(5)

 POP

7

3

2

5

Stacks

 On Monday we used stacks to:
1) Convert infix expressions to postfix expressions

2) Evaluate postfix expressions

 Infix: 2 * 3 + 5 + 3 * 4

 Postfix: 2 3 * 5 + 3 4 * +
The operator follows all of its operands

Reduces computer memory access and utilizes the stack
to evaluate expressions.

No parentheses are necessary

Still used by some calculators.

Stack Implementation

 Last class we talked about 2 types of stack
implementations – Array and Linked List

 Array Implementation:
 When we initialize the array,
 There are no items in the stack, so what is top set to in

the initialize function?
-1

 What if we push(10), then what is top?
0

 What if we pop(), then what is top?
-1

 For all of these operations we either access top + 1, or
top
so all operations are O(1) (we don’t have to traverse the array.)

struct stack {

 int items[SIZE];

 int top;

};

Stack Implementation

 Linked List Implementation

 Notice that we don’t have a ‘top’

 Why?

The top will ALWAYS be the first node

And we don’t need to worry about the size since it’s a
linked list that can expand while there’s heap memory
available.

So we only need to either add an element to the front or
take an element off of the front

– The runtime for either operation is O(1)

struct stack {

 int data;

 struct stack *next;

};

Stack – Linked List Implementation
 Why do we use double pointers?

 If we want to be able to return a 0 or a 1 if a Push
is successful,

We can’t return the address of the new front of the list
(which is what we would usually do with a linked list)

 So we’ll pass a pointer to the front of the list
(stack **front)

and then if we modify (*front) in the Push function we
are changing not the local value of the pointer,

but we’re changing the contents of the pointer in the
same memory address that was passed from main so
those changes will be reflected in main.

Stack Application

 We did 2 examples last time:

1) Reading in a list of numbers from a user and
printing it in backwards order.

We also talked about reading in each character of a
string and printing it out in backwards order.

2) Checking if we have matching parentheses

Queues
 If we wanted to simulate customers waiting in a line

to be served,

 We wouldn’t use a stack…

LIFO is only going to make the person that got in line first mad.

Queues
 We would want to use FIFO

 First In First Out, or 1st in line 1st one to get served.

 Instead of push and pop, we have the operations

 Enqueue and Dequeue that add/remove elements
from the list.

Queue Basic Operations

 Enqueue:
 Inserts an element at the back of the queue
 Returns 1 if successful, 0 otherwise.

 Dequeue:
 Removes the element at the front of the queue.
 Returns the removed element.

 Peek
 Looks at the element at the front of the queue without removing it.
 Returns the front element.

 isEmpty
 Checks to see if the queue is empty.
 Returns true or false.

 isFull
 Checks to see if the queue is full.
 Returns true or false.

Queue Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

Queues - Array Implementation

 What would we need for an array
implementation?

 We need an array obviously

 And we need to keep track of the front and the back.

BAD Queue Implementation
Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

front back

back

back

back

back

front

front

front

front

Notice that you have to
Shift the contents of the
Array over each time front
changes

Queues: Array Implementation

 We will use the following revamped idea to
store our queue structure:

 Keep track of the array, the front, and the current
number of elements.

struct queue {

 int *elements;

 int front;

 int numElements;

};

Queues: Array Implementation

 Enqueue:

 We’ll simply add the given element to the index
“back” in the array.

 BUT we’re not storing “back”!!!!!

 What must we do instead?

Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

struct queue {

 int *elements;

 int front;

 int numElements;

};

9 11 13 15
front

numElements = 4

Queues: Array Implementation

 Enqueue(17):

 Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

Front = 2, plus numElements = 4, gives us 6

We can mod by the queueSize

(front + numElements) % queueSize = 0

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 4 17 numElements = 5

Queues: Array Implementation

 So we’re allowing our array to essentially wrap
around.

 This way we don’t have to copy the contents of
our array over if front or back moves

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17

Queues: Array Implementation

 Dequeue

 If the numElements > 0

numElements--;

front = (front + 1) % queueSize

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17
front

numElements = 4

Queues - Dynamically Allocated
Array Implementation

 What if our numElements == queueSize?

 We can realloc more memory for our array and
update queueSize!

 But we also need to make sure we copy over the
wraparound values correctly.

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

Queues - Linked List Implementation

 We are going to need a
linked list
 So we’ll use the same node

implementation as before.

 But we’ll need to keep track
of the front and the back.
 Otherwise either enqueue or

dequeue would require an
O(n) traversal each time.

 So we’ll keep a front and
back pointer inside of a
structure called queue.

struct node {

 int data;

 struct node *next;

};

struct queue {

 struct node *front;

 struct node *back;

};

