
Stacks &

Their Applications

COP 3502

Stacks

 A stack is a data structure that
stores information arranged like a
stack.
 We have seen stacks before when

we used a stack to trace through
recursive programs.

 The essential idea is that the last
item placed into the stack is the
first item removed from the stack
 Or LIFO(Last In, First Out) for short.

15

7

23

2 TOP

Stacks

 There are two operations
that modify the contents
of a stack:

 Push – inserts some data
onto the stack.

 Pop – that extracts the
top-most element from the
stack.

PUSH POP

15

7

23

2 TOP

Abstract Data Type
 Side Note: What is an Abstract Data Type (in C)?
 An abstract data type is something that is not built into

the language.
So int and double are built-in types in the C language.

 An Abstract Data Type is something we “build”
and is often defined in terms of its behavior

 Definition from Wikipedia:
An abstract data type is defined indirectly, only by the operations

that may be performed on it (i.e. behavior).

 So example of ADT’s we’ve seen so far are:
Linked Lists, Doubly Linked Lists, Circularly Linked Lists

And now Stacks

Stacks

 Stacks:
 Stacks are an Abstract Data Type

They are NOT built into C

 So we must define them and their behaviors

 Stack behavior:
 A data structure that stores information in the form of

a stack.
Contains any number of elements of the same type.

 Access policy:
The last item placed on the stack is the first item removed

from the stack.

Stacks

 Stacks:
 Basic Operations: PUSH and POP
PUSH – PUSH an item on the top of the stack.

 PUSH

15

7

23

2 TOP

19

15

7

23

2

19 TOP

(Stack before Push Operation) (Stack after Push Operation)

Stacks
 Stacks:
 Basic Operations: PUSH and POP
POP – POP off the item in the stack and return it.

POP

15

7

23

2

19 TOP

15

7

23

2 TOP

(Stack after Pop Operation) (Stack before Pop Operation)

19 Element removed:

Stacks

 Stacks:

 Other useful operations:

empty – typically implemented as a boolean function
that returns true if no items are in the stack.

full – returns true if no more items can be added to the
stack.

– In theory a stack should never be full, but any actual
implementation has a limit on the # of elements it can store.

top – simply returns the value stored at the top of the
stack without popping it off the stack.

Stacks

 Simple Example:

 PUSH(7)

 PUSH(3)

 PUSH(2)

 POP

 POP

 PUSH(5)

 POP

7

3

2
5

Stacks

 Stack Applications:

 Whenever we need a LIFO component to a
system.

 There are several examples outside the scope of
this class you will see in CS2

 For now, we’ll go over 2 classical examples

Converting infix expressions to a postfix expression.

Evaluating a postfix expression.

Stacks

 An Infix Arithmetic Expression:
 Consider the expression: 2 * 3 + 5 + 3 * 4

 We know how to evaluate this expression because we
usually see it in this form.
 Multiply 2 * 3 = 6, store this in your head.

Add 5, now store 11 in your head.

Now multiply 3 * 4 = 12.

Retrieve 11 and add to 12.

 This was easy because we know the rules of precedence
for infix expressions.

 But what if we didn’t know these rules?

Stacks

 There are other ways of writing this
expression:

 2 3 * 5 + 3 4 * +

 is the Postfix form of:

2 * 3 + 5 + 3 * 4

 And if you read from left to right, the operators
are always in the correct evaluation order.

Stacks

 So there are 3 types of notations for
expressions

 Infix (A + B)

 Postfix (A B +)

 Prefix (+ A B)

 We’re just going to worry about Infix and
Postfix.

 What does this have to do with Stacks??

Stacks

 We are going to use stacks to:

1) Evaluate postfix expressions

2) Convert infix expressions to a postfix expressions

Stacks

 Evaluating a Postfix Expression (A B +)

 Consider the Postfix expression:

2 3 * 5 + 3 4 * +

 The Rules are:

1) Each number gets pushed onto the stack.

2) Whenever you get to an operator OP,

– you POP off the last two values off the stack, s1 and s2 respectively.

– Then you PUSH value s2 OP s1 back onto the stack.

» (If there were not two values to pop off, the expression is not in
valid Postfix notation)

3) When you are done, you should have a single value left on the
stack that the expression evaluates to.

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets PUSHed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

PUSH(2)

2

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets PUSHed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

PUSH(3)

2
3

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

POP s1 = 3

2
3
6

POP s2 = 2
PUSH(2 * 3 = 6)

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

PUSH(5)

6
5

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

POP s1 = 5

6
5

11

POP s2 = 6
PUSH(6 + 5 = 11)

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

PUSH(3)

3
11

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

PUSH(4)

3
11

4

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

POP s1 = 4

3
11

4
12

POP s2 = 3
PUSH(3 * 4 = 12)

2 3 * 5 + 3 4 * +
 The Rules are:

1) Each number gets pushed
onto the stack.

2) Whenever you get to an
operator OP,
 you POP off the last two

values off the stack, s1 and
s2 respectively.

 Then you PUSH value s2 OP
s1 back onto the stack.
– (If there aren’t 2 values to

pop, the expression is not
valid Postfix)

3) When you are done, you
should have a single value
left on the stack that the
expression evaluates to.

POP s1 = 12

11
12
23

POP s2 = 11
PUSH(11 + 12 = 23)

Stacks

 So now we know how to evaluate a Postfix expression
using a stack.

 NOW, we’re going to convert an Infix expression to
Postfix using a stack.
 Before we get started, we need to know operator

precedence:
1) (In the expression, left paren has highest priority
2) * / Going from left to right whichever comes 1st
3) + - Going from left to right whichever comes 1st
4) (In the stack, the left parentheses has lowest priority

Stacks

 Converting an Infix expression to a Postfix expression.

 Rules:
1) For all operands, automatically place them in the output

expression.

2) For an operator (+, -, *, /, or a parenthesis)
 IF the operator is an open parenthesis, push it onto the stack.

 ELSE IF the operator is an arithmetic one, then do this:
– Continue popping off items off the stack and placing them in the

output expression until you hit an operator with lower precedence
than the current operator or until you hit an open parenthesis.

– At this point, push the current operator onto the stack.

 ELSE Pop off all operators off the stack one by one, placing them
in the output expression until you hit the first(matching) open
parenthesis. When this occurs, pop off the open parenthesis and
discard both ()s.

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

PUSH (

(

Output:

STACK

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output:

STACK

Output: 7

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7

STACK

PUSH *

*

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7

STACK

PUSH (

*

(

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7

STACK

*

(

Output: 7 6

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6

STACK

*

(

PUSH +

+

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6

STACK

*

(
+

Output: 7 6 3

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3

STACK

*

(
+

POP +

Output: 7 6 3 +

POP (

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 +

STACK

*

POP *

Output: 7 6 3 + *

PUSH +

+

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 +

STACK

Output: 7 6 3 + *

PUSH (

+
(

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + *

STACK

Output: 7 6 3 + * 2

+
(

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + *

STACK

Output: 7 6 3 + * 2

+
(

PUSH –

 –

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + * 2

STACK

Output: 7 6 3 + * 2 3

+
(

 –

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + * 2 3

STACK

Output: 7 6 3 + * 2 3 –

+
(

 –

POP –
POP (

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + * 2 3 –

STACK

Output: 7 6 3 + * 2 3 – +

+

POP +
PUSH +

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + * 2 3 – +

STACK

Output: 7 6 3 + * 2 3 – + 1

+

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

(7 * (6 + 3) + (2 – 3) + 1)

(

Output: 7 6 3 + * 2 3 – + 1

STACK

Output: 7 6 3 + * 2 3 – + 1 +

+

POP +
POP (

Converting Infix to Postfix

 Given the Infix expression:

 (7 * (6 + 3) + (2 – 3) + 1)

 Our final Postfix expression was this:
 7 6 3 + * 2 3 – + 1 +

 We can check if this is correct by evaluating the
Postfix expression like we did before.
 Let’s do that on the board…

 We should get (7 * (6 + 3) + (2 – 3) + 1) =
62

Infix to Postfix

 Try this example:

 5 * 3 + 2 + 6 * 4

 Don’t forget to
check your
answer!

 Rules:
1) For all operands, automatically put in

output expression.
2) For an operator +, -, *, /, or (,)
 IF the operator is an open paren,

PUSH it.
 ELSE IF the operator is an arithmetic

one, then do this:
– Continue POPing items and placing

them in the output until you hit an OP
with < precedence than the curr OP or
until you hit an open paren.

– At this point, PUSH the curr OP.

 ELSE POP off all OPs off the stack 1 by
1, placing them in the output
expression until you hit the 1st) open
paren. When this occurs, POP off the
open paren and discard both ()s.

