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Algorithm Analysis 

 We will use order notation to approximate 2 
things about algorithms: 

 How much time they take 

 How much memory (space) they use. 

 We want an approximation because 

 it will be nearly impossible to exactly figure out 
how much time an algorithm will take on a 
particular computer. 



Algorithm Analysis 

 The type of approximation we will be looking 
for is a Big-O approximation 

 A type of order notation 

 Used to describe the limiting behavior of a 
function, when the argument approaches a large 
value. 

 In simpler terms a Big-O approximation is:  

An Upper bound on the growth rate of a function. 



Big-O 

 Assume: 
 Each statement and each comparison in C takes some 

constant time. 

 Time and space complexity will be a function of: 
 The input size (usually referred to as n) 

 Since we are going for an approximation,  
 we will use 2 simplifications in counting the # of 

steps an algorithm takes: 
1) Eliminate any term whose contribution to the total 

ceases to be significant as n becomes large 

2) Eliminate constant factors. 



Big-O 
 Only consider the most significant term 

 So for :  4n2 + 3n – 5, we only look at 4n2 

 Then, we get rid of the constant 4* 

 And we get O(n2) 



Analysis of Code Segments 

 Each of the following examples illustrates how 
to determine the Big-O run time of a segment 
of code or a function.  

 Each of these functions will be analyzed for their 
runtime in terms of the input size (usually variable 
n. ) 

 Keep in mind that run-time may be dependent on 
more than one input variable. 



Analysis of Code Segments:  EX 1 

 This is a straight-forward function to 
analyze 
 We only care about the simple ops in terms 

of n, remember any constant # of simple 
steps counts as 1. 

 Let’s make a chart for the different values of 
(i,j), since for each change in i,j we do a 
constant amount of work. 

int func1(int n) { 

   x = 0; 

   for (i = 1; i <= n; i++){ 

      for (j = 1; j <=n; j++) { 

         x++; 

      } 

   } 

   return x; 

} 
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 So for each value of i, we do n steps. 

 n + n + n +…+ n  

 = n * n  

 = O(n 2) 
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Analysis of Code Segments:  EX 1 



 In this situation, the first for loop runs n times, so we do n steps.  

 After it finishes, we run the second for loop which also runs n 
times. 

  Our total runtime is on the order of n+ n = 2 n.  

 In order notation, we drop all leading constants, so our runtime is  

 O(n ) 

int func2(int n) { 

  x = 0; 

  for (i = 1; i <= n; i++)  

     x++; 

  for (i = 1; i<=n; i++)  

     x++; 

  return x; 

}  

1 operation 

1 operation 

Analysis of Code Segments:  EX 2 



 Since n is changing, let origN be the original value of the 
variable n in the function. 

 The 1st time through the loop,  n gets set to origN/2 

 The 2nd time through the loop, n gets set to origN/4 

 The 3rd time through the loop,  n gets set to origN/8 

 In general, after k loops,             n get set to origN/2k 

 So the algorithm ends when origN/2k = 1 approximately 

int func3(int n) { 

  while (n>0) { 

    printf(“%d”, n%2); 

    n = n/2; 

  } 

}     

1 operation 

1 operation 

Analysis of Code Segments:  EX 3 



 So the algorithm ends when origN/2k = 1 approximately 
 (where k is the number of steps) 

  origN = 2k 

 take log of both sides  

   log2(origN) = log2(2k)  

  log2(origN) = k 

 So the runtime of this function is 

 O(lg n) 

int func3(int n) { 

  while (n>0) { 

    printf(“%d”, n%2); 

    n = n/2; 

  } 

}     

1 operation 

1 operation 

Note:  
When we use logs in run-time,  
we omit the base,  
since for all log functions with 
different  
bases greater than 1,  
they are all equivalent  
with respect to order notation. 

Analysis of Code Segments:  EX 3 



Math Review - Logs 

 Logs – the log function is the inverse of an exponent,  

 if ba = c   then by definition logbc = a 

 
 Rules: 

 logba + logbc = logbac  logba – logbc = logba/c 

 logbac = c logba    logba = logca/logcb 

 b logca = a logcb      babc = ba+c 

 ba/bc = ba-c     (ba)c = bac   

 

 So what is log22k ? 

 = k log22 , the base to the ? power = 2 

 = k 



Logarithms 

 Sidenote: 
 We never use bases for logarithms in O-notation 
 This is because changing bases of logs just involves 

multiplying by a suitable constant 
and we don’t care about constant of proportionality for O-

notation! 
 

 For example: 
 If we have log10n and we want it in terms of log2n 

We know log10n = log2n/log210 
Where 1/log210 = 0.3010 
Then we get log10n = 0.3010 x log2n 



 In this function, i and j can increase, but they can never decrease.  
 Furthermore, the code will stop when i gets to n.  

 Thus, the statement i++ can never run more than n times and the statement 
j++ can never run more than n times.  

 Thus, the most number of times these two critical statements can run is 2n.  

 It follows that the runtime of this segment of code is 

 O(n) 

int func4(int** array, int n) { 

   int i=0, j=0; 

   while (i < n) { 

      while (j < n && array[i][j] == 1) 

         j++; 

      i++; 

   } 

   return j; 

} 

Analysis of Code Segments:  EX 4 



 All we did in this example is reset j to 0 at the beginning of i loop 
iteration.  
 Now, j can range from 0 to n for EACH value of i  

 (similar to example #1),  

 so the run-time is 

 O(n2) 

int func5(int** array, int n) { 

   int i=0, j=0; 

   while (i < n) { 

      j=0; 

      while (j < n && array[i][j] == 1) 

         j++; 

      i++; 

   } 

   return j; 

} 

Analysis of Code Segments:  EX 5 



 The amount of times the inner loop runs 
is dependent on i 
 The table shows how j changes w/respect to i 

 The # of times the inner loop runs is the sum: 

 0 + 1 + 2 + 3 + … + (n-1) 

 = (n-1)n/2 = 0.5n2 + 0.5n 

 So the run time is? 

int func6(int array[], int n) { 

   int i,j, sum=0; 

   for (i=0; i<n; i++) { 

      for (j=i+1; j<n; j++) 

         if (array[i] > array[j]) 

            sum++; 

  } 

  return sum; 

} 

Analysis of Code Segments:  EX 6 

i j value 

0 1,2,3,…,n-1 n-1 

1 2,3,4,…,n-1 n-2 

2 3,4,5,…,n-1 n-3 

… 

n-1 nothing 0 

 Common Summation: 

 

 

 

 What we have: 

 

 O(n2) 

i j value 

0 1,2,3,…,n-1 n-1 

1 2,3,4,…,n-1 n-2 

i j value 

0 1,2,3,…,n-1 n-1 

i j value 

0 1,2,3,…,n-1 n-1 

1 2,3,4,…,n-1 n-2 

2 3,4,5,…,n-1 n-3 



 This runtime is in terms of sizea and sizeb.  

 Clearly, similar to Example #1, we simply multiply the # of 
terms in the 1st loop by the number of terms in the 2nd loop.  

 Here, this is simply sizea*sizeb. 

 So the runtime is? 

int f7(int a[], int sizea, int b[], int sizeb) { 

   int i, j; 

   for (i=0; i<sizea; i++) 

      for (j=0; j<sizeb; j++) 

         if (a[i] == b[j]) 

            return 1; 

    return 0; 

}  

Analysis of Code Segments:  EX 7 

O(sizea*sizeb) 



 As previously discussed, a single binary search runs in O(lg n) 

 where n represents the number of items in the original list you’re 
searching. 

 In this particular case, the runtime is? 

 since we run our binary search on sizeb items exactly sizea times. 

int f8(int a[], int sizea, int b[], int sizeb) { 

   int i, j; 

  

   for (i=0; i<sizea; i++) { 

      if (binSearch(b, sizeb, a[i])) 

         return 1; 

   } 

   return 0; 

}  

Analysis of Code Segments:  EX 8 

O(sizea*lg(sizeb)) 



 In this particular case, the runtime is? 
 since we run our binary search on sizeb items exactly sizea times. 

 Notice:  
 that the runtime for this algorithm changes greatly if we switch the 

order of the arrays.  Consider the 2 following examples: 

1) sizea = 1000000, sizeb = 10 

2) sizea = 10,            sizeb = 1000000 

int f8(int a[], int sizea, int b[], int sizeb) { 

   int i, j; 

  

   for (i=0; i<sizea; i++) { 

      if (binSearch(b, sizeb, a[i])) 

         return 1; 

   } 

   return 0; 

}  

Analysis of Code Segments:  EX 8 

O(sizea*lg(sizeb)) 

sizea*lg(sizeb) ~ 3320000 

sizea*lg(sizeb) ~ 300 



Time Estimation Practice Problems 

1) Algorithm A runs in O(log2n) time, and for an 
input size of 16, the algorithm runs in 28 ms. 
 How long can you expect it to take to run on an input 

size of 64? 
 C*log2(16) = 28ms   
   4c = 28ms  
  c = 7 

 
 If n = 64, let’s solve for time: 
 7*log264 = time ms 
 7*6 = 42 ms 



Time Estimation Practice Problems 
1) Assume that you are given an algorithm that runs 

in O(Nlog2N) time. Suppose it runs in 20ms for an 
input size of 16.  

 How long can you expect it to take to run on an input 
size of 64? 

 


