
Intro to Algorithm

analysis

COP 3502

Algorithm Analysis

 We will use order notation to approximate 2
things about algorithms:

 How much time they take

 How much memory (space) they use.

 We want an approximation because

 it will be nearly impossible to exactly figure out
how much time an algorithm will take on a
particular computer.

Algorithm Analysis

 The type of approximation we will be looking
for is a Big-O approximation

 A type of order notation

 Used to describe the limiting behavior of a
function, when the argument approaches a large
value.

 In simpler terms a Big-O approximation is:

An Upper bound on the growth rate of a function.

Big-O

 Assume:
 Each statement and each comparison in C takes some

constant time.

 Time and space complexity will be a function of:
 The input size (usually referred to as n)

 Since we are going for an approximation,
 we will use 2 simplifications in counting the # of

steps an algorithm takes:
1) Eliminate any term whose contribution to the total

ceases to be significant as n becomes large

2) Eliminate constant factors.

Big-O
 Only consider the most significant term

 So for : 4n2 + 3n – 5, we only look at 4n2

 Then, we get rid of the constant 4*

 And we get O(n2)

Analysis of Code Segments

 Each of the following examples illustrates how
to determine the Big-O run time of a segment
of code or a function.

 Each of these functions will be analyzed for their
runtime in terms of the input size (usually variable
n.)

 Keep in mind that run-time may be dependent on
more than one input variable.

Analysis of Code Segments: EX 1

 This is a straight-forward function to
analyze
 We only care about the simple ops in terms

of n, remember any constant # of simple
steps counts as 1.

 Let’s make a chart for the different values of
(i,j), since for each change in i,j we do a
constant amount of work.

int func1(int n) {

 x = 0;

 for (i = 1; i <= n; i++){

 for (j = 1; j <=n; j++) {

 x++;

 }

 }

 return x;

}

1 operation

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

… …

n 1

… …

n n

i j
1 1

1 2

1 3

… …

1 n

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

 So for each value of i, we do n steps.

 n + n + n +…+ n

 = n * n

 = O(n 2)

int func1(int n) {

 x = 0;

 for (i = 1; i <= n; i++){

 for (j = 1; j <=n; j++) {

 x++;

 }

 }

 return x;

}

1 operation

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

… …

n 1

… …

n n

i j
1 1

1 2

1 3

… …

1 n

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

Analysis of Code Segments: EX 1

 In this situation, the first for loop runs n times, so we do n steps.

 After it finishes, we run the second for loop which also runs n
times.

 Our total runtime is on the order of n+ n = 2 n.

 In order notation, we drop all leading constants, so our runtime is

 O(n)

int func2(int n) {

 x = 0;

 for (i = 1; i <= n; i++)

 x++;

 for (i = 1; i<=n; i++)

 x++;

 return x;

}

1 operation

1 operation

Analysis of Code Segments: EX 2

 Since n is changing, let origN be the original value of the
variable n in the function.

 The 1st time through the loop, n gets set to origN/2

 The 2nd time through the loop, n gets set to origN/4

 The 3rd time through the loop, n gets set to origN/8

 In general, after k loops, n get set to origN/2k

 So the algorithm ends when origN/2k = 1 approximately

int func3(int n) {

 while (n>0) {

 printf(“%d”, n%2);

 n = n/2;

 }

}

1 operation

1 operation

Analysis of Code Segments: EX 3

 So the algorithm ends when origN/2k = 1 approximately
 (where k is the number of steps)

  origN = 2k

 take log of both sides

  log2(origN) = log2(2k)

  log2(origN) = k

 So the runtime of this function is

 O(lg n)

int func3(int n) {

 while (n>0) {

 printf(“%d”, n%2);

 n = n/2;

 }

}

1 operation

1 operation

Note:
When we use logs in run-time,
we omit the base,
since for all log functions with
different
bases greater than 1,
they are all equivalent
with respect to order notation.

Analysis of Code Segments: EX 3

Math Review - Logs

 Logs – the log function is the inverse of an exponent,

 if ba = c then by definition logbc = a

 Rules:

 logba + logbc = logbac logba – logbc = logba/c

 logbac = c logba logba = logca/logcb

 b logca = a logcb babc = ba+c

 ba/bc = ba-c (ba)c = bac

 So what is log22k ?

 = k log22 , the base to the ? power = 2

 = k

Logarithms

 Sidenote:
 We never use bases for logarithms in O-notation
 This is because changing bases of logs just involves

multiplying by a suitable constant
and we don’t care about constant of proportionality for O-

notation!

 For example:
 If we have log10n and we want it in terms of log2n

We know log10n = log2n/log210
Where 1/log210 = 0.3010
Then we get log10n = 0.3010 x log2n

 In this function, i and j can increase, but they can never decrease.
 Furthermore, the code will stop when i gets to n.

 Thus, the statement i++ can never run more than n times and the statement
j++ can never run more than n times.

 Thus, the most number of times these two critical statements can run is 2n.

 It follows that the runtime of this segment of code is

 O(n)

int func4(int** array, int n) {

 int i=0, j=0;

 while (i < n) {

 while (j < n && array[i][j] == 1)

 j++;

 i++;

 }

 return j;

}

Analysis of Code Segments: EX 4

 All we did in this example is reset j to 0 at the beginning of i loop
iteration.
 Now, j can range from 0 to n for EACH value of i

 (similar to example #1),

 so the run-time is

 O(n2)

int func5(int** array, int n) {

 int i=0, j=0;

 while (i < n) {

 j=0;

 while (j < n && array[i][j] == 1)

 j++;

 i++;

 }

 return j;

}

Analysis of Code Segments: EX 5

 The amount of times the inner loop runs
is dependent on i
 The table shows how j changes w/respect to i

 The # of times the inner loop runs is the sum:

 0 + 1 + 2 + 3 + … + (n-1)

 = (n-1)n/2 = 0.5n2 + 0.5n

 So the run time is?

int func6(int array[], int n) {

 int i,j, sum=0;

 for (i=0; i<n; i++) {

 for (j=i+1; j<n; j++)

 if (array[i] > array[j])

 sum++;

 }

 return sum;

}

Analysis of Code Segments: EX 6

i j value

0 1,2,3,…,n-1 n-1

1 2,3,4,…,n-1 n-2

2 3,4,5,…,n-1 n-3

…

n-1 nothing 0

 Common Summation:

 What we have:

 O(n2)

i j value

0 1,2,3,…,n-1 n-1

1 2,3,4,…,n-1 n-2

i j value

0 1,2,3,…,n-1 n-1

i j value

0 1,2,3,…,n-1 n-1

1 2,3,4,…,n-1 n-2

2 3,4,5,…,n-1 n-3

 This runtime is in terms of sizea and sizeb.

 Clearly, similar to Example #1, we simply multiply the # of
terms in the 1st loop by the number of terms in the 2nd loop.

 Here, this is simply sizea*sizeb.

 So the runtime is?

int f7(int a[], int sizea, int b[], int sizeb) {

 int i, j;

 for (i=0; i<sizea; i++)

 for (j=0; j<sizeb; j++)

 if (a[i] == b[j])

 return 1;

 return 0;

}

Analysis of Code Segments: EX 7

O(sizea*sizeb)

 As previously discussed, a single binary search runs in O(lg n)

 where n represents the number of items in the original list you’re
searching.

 In this particular case, the runtime is?

 since we run our binary search on sizeb items exactly sizea times.

int f8(int a[], int sizea, int b[], int sizeb) {

 int i, j;

 for (i=0; i<sizea; i++) {

 if (binSearch(b, sizeb, a[i]))

 return 1;

 }

 return 0;

}

Analysis of Code Segments: EX 8

O(sizea*lg(sizeb))

 In this particular case, the runtime is?
 since we run our binary search on sizeb items exactly sizea times.

 Notice:
 that the runtime for this algorithm changes greatly if we switch the

order of the arrays. Consider the 2 following examples:

1) sizea = 1000000, sizeb = 10

2) sizea = 10, sizeb = 1000000

int f8(int a[], int sizea, int b[], int sizeb) {

 int i, j;

 for (i=0; i<sizea; i++) {

 if (binSearch(b, sizeb, a[i]))

 return 1;

 }

 return 0;

}

Analysis of Code Segments: EX 8

O(sizea*lg(sizeb))

sizea*lg(sizeb) ~ 3320000

sizea*lg(sizeb) ~ 300

Time Estimation Practice Problems

1) Algorithm A runs in O(log2n) time, and for an
input size of 16, the algorithm runs in 28 ms.
 How long can you expect it to take to run on an input

size of 64?
 C*log2(16) = 28ms
  4c = 28ms
  c = 7

 If n = 64, let’s solve for time:
 7*log264 = time ms
 7*6 = 42 ms

Time Estimation Practice Problems
1) Assume that you are given an algorithm that runs

in O(Nlog2N) time. Suppose it runs in 20ms for an
input size of 16.

 How long can you expect it to take to run on an input
size of 64?

