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Algorithm Analysis 

 We will use order notation to approximate 2 
things about algorithms: 

 How much time they take 

 How much memory (space) they use. 

 We want an approximation because 

 it will be nearly impossible to exactly figure out 
how much time an algorithm will take on a 
particular computer. 



Algorithm Analysis 

 The type of approximation we will be looking 
for is a Big-O approximation 

 A type of order notation 

 Used to describe the limiting behavior of a 
function, when the argument approaches a large 
value. 

 In simpler terms a Big-O approximation is:  

An Upper bound on the growth rate of a function. 



Big-O 

 Assume: 
 Each statement and each comparison in C takes some 

constant time. 

 Time and space complexity will be a function of: 
 The input size (usually referred to as n) 

 Since we are going for an approximation,  
 we will use 2 simplifications in counting the # of 

steps an algorithm takes: 
1) Eliminate any term whose contribution to the total 

ceases to be significant as n becomes large 

2) Eliminate constant factors. 



Big-O 
 Only consider the most significant term 

 So for :  4n2 + 3n – 5, we only look at 4n2 

 Then, we get rid of the constant 4* 

 And we get O(n2) 



Analysis of Code Segments 

 Each of the following examples illustrates how 
to determine the Big-O run time of a segment 
of code or a function.  

 Each of these functions will be analyzed for their 
runtime in terms of the input size (usually variable 
n. ) 

 Keep in mind that run-time may be dependent on 
more than one input variable. 



Analysis of Code Segments:  EX 1 

 This is a straight-forward function to 
analyze 
 We only care about the simple ops in terms 

of n, remember any constant # of simple 
steps counts as 1. 

 Let’s make a chart for the different values of 
(i,j), since for each change in i,j we do a 
constant amount of work. 

int func1(int n) { 

   x = 0; 

   for (i = 1; i <= n; i++){ 

      for (j = 1; j <=n; j++) { 

         x++; 

      } 

   } 

   return x; 

} 
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 So for each value of i, we do n steps. 

 n + n + n +…+ n  

 = n * n  

 = O(n 2) 

int func1(int n) { 

   x = 0; 

   for (i = 1; i <= n; i++){ 

      for (j = 1; j <=n; j++) { 

         x++; 

      } 

   } 

   return x; 

} 
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Analysis of Code Segments:  EX 1 



 In this situation, the first for loop runs n times, so we do n steps.  

 After it finishes, we run the second for loop which also runs n 
times. 

  Our total runtime is on the order of n+ n = 2 n.  

 In order notation, we drop all leading constants, so our runtime is  

 O(n ) 

int func2(int n) { 

  x = 0; 

  for (i = 1; i <= n; i++)  

     x++; 

  for (i = 1; i<=n; i++)  

     x++; 

  return x; 

}  

1 operation 

1 operation 

Analysis of Code Segments:  EX 2 



 Since n is changing, let origN be the original value of the 
variable n in the function. 

 The 1st time through the loop,  n gets set to origN/2 

 The 2nd time through the loop, n gets set to origN/4 

 The 3rd time through the loop,  n gets set to origN/8 

 In general, after k loops,             n get set to origN/2k 

 So the algorithm ends when origN/2k = 1 approximately 

int func3(int n) { 

  while (n>0) { 

    printf(“%d”, n%2); 

    n = n/2; 

  } 

}     

1 operation 

1 operation 

Analysis of Code Segments:  EX 3 



 So the algorithm ends when origN/2k = 1 approximately 
 (where k is the number of steps) 

  origN = 2k 

 take log of both sides  

   log2(origN) = log2(2k)  

  log2(origN) = k 

 So the runtime of this function is 

 O(lg n) 

int func3(int n) { 

  while (n>0) { 

    printf(“%d”, n%2); 

    n = n/2; 

  } 

}     

1 operation 

1 operation 

Note:  
When we use logs in run-time,  
we omit the base,  
since for all log functions with 
different  
bases greater than 1,  
they are all equivalent  
with respect to order notation. 

Analysis of Code Segments:  EX 3 



Math Review - Logs 

 Logs – the log function is the inverse of an exponent,  

 if ba = c   then by definition logbc = a 

 
 Rules: 

 logba + logbc = logbac  logba – logbc = logba/c 

 logbac = c logba    logba = logca/logcb 

 b logca = a logcb      babc = ba+c 

 ba/bc = ba-c     (ba)c = bac   

 

 So what is log22k ? 

 = k log22 , the base to the ? power = 2 

 = k 



Logarithms 

 Sidenote: 
 We never use bases for logarithms in O-notation 
 This is because changing bases of logs just involves 

multiplying by a suitable constant 
and we don’t care about constant of proportionality for O-

notation! 
 

 For example: 
 If we have log10n and we want it in terms of log2n 

We know log10n = log2n/log210 
Where 1/log210 = 0.3010 
Then we get log10n = 0.3010 x log2n 



 In this function, i and j can increase, but they can never decrease.  
 Furthermore, the code will stop when i gets to n.  

 Thus, the statement i++ can never run more than n times and the statement 
j++ can never run more than n times.  

 Thus, the most number of times these two critical statements can run is 2n.  

 It follows that the runtime of this segment of code is 

 O(n) 

int func4(int** array, int n) { 

   int i=0, j=0; 

   while (i < n) { 

      while (j < n && array[i][j] == 1) 

         j++; 

      i++; 

   } 

   return j; 

} 

Analysis of Code Segments:  EX 4 



 All we did in this example is reset j to 0 at the beginning of i loop 
iteration.  
 Now, j can range from 0 to n for EACH value of i  

 (similar to example #1),  

 so the run-time is 

 O(n2) 

int func5(int** array, int n) { 

   int i=0, j=0; 

   while (i < n) { 

      j=0; 

      while (j < n && array[i][j] == 1) 

         j++; 

      i++; 

   } 

   return j; 

} 

Analysis of Code Segments:  EX 5 



 The amount of times the inner loop runs 
is dependent on i 
 The table shows how j changes w/respect to i 

 The # of times the inner loop runs is the sum: 

 0 + 1 + 2 + 3 + … + (n-1) 

 = (n-1)n/2 = 0.5n2 + 0.5n 

 So the run time is? 

int func6(int array[], int n) { 

   int i,j, sum=0; 

   for (i=0; i<n; i++) { 

      for (j=i+1; j<n; j++) 

         if (array[i] > array[j]) 

            sum++; 

  } 

  return sum; 

} 

Analysis of Code Segments:  EX 6 

i j value 

0 1,2,3,…,n-1 n-1 

1 2,3,4,…,n-1 n-2 

2 3,4,5,…,n-1 n-3 

… 

n-1 nothing 0 

 Common Summation: 

 

 

 

 What we have: 

 

 O(n2) 

i j value 

0 1,2,3,…,n-1 n-1 

1 2,3,4,…,n-1 n-2 

i j value 

0 1,2,3,…,n-1 n-1 

i j value 

0 1,2,3,…,n-1 n-1 

1 2,3,4,…,n-1 n-2 

2 3,4,5,…,n-1 n-3 



 This runtime is in terms of sizea and sizeb.  

 Clearly, similar to Example #1, we simply multiply the # of 
terms in the 1st loop by the number of terms in the 2nd loop.  

 Here, this is simply sizea*sizeb. 

 So the runtime is? 

int f7(int a[], int sizea, int b[], int sizeb) { 

   int i, j; 

   for (i=0; i<sizea; i++) 

      for (j=0; j<sizeb; j++) 

         if (a[i] == b[j]) 

            return 1; 

    return 0; 

}  

Analysis of Code Segments:  EX 7 

O(sizea*sizeb) 



 As previously discussed, a single binary search runs in O(lg n) 

 where n represents the number of items in the original list you’re 
searching. 

 In this particular case, the runtime is? 

 since we run our binary search on sizeb items exactly sizea times. 

int f8(int a[], int sizea, int b[], int sizeb) { 

   int i, j; 

  

   for (i=0; i<sizea; i++) { 

      if (binSearch(b, sizeb, a[i])) 

         return 1; 

   } 

   return 0; 

}  

Analysis of Code Segments:  EX 8 

O(sizea*lg(sizeb)) 



 In this particular case, the runtime is? 
 since we run our binary search on sizeb items exactly sizea times. 

 Notice:  
 that the runtime for this algorithm changes greatly if we switch the 

order of the arrays.  Consider the 2 following examples: 

1) sizea = 1000000, sizeb = 10 

2) sizea = 10,            sizeb = 1000000 

int f8(int a[], int sizea, int b[], int sizeb) { 

   int i, j; 

  

   for (i=0; i<sizea; i++) { 

      if (binSearch(b, sizeb, a[i])) 

         return 1; 

   } 

   return 0; 

}  

Analysis of Code Segments:  EX 8 

O(sizea*lg(sizeb)) 

sizea*lg(sizeb) ~ 3320000 

sizea*lg(sizeb) ~ 300 



Time Estimation Practice Problems 

1) Algorithm A runs in O(log2n) time, and for an 
input size of 16, the algorithm runs in 28 ms. 
 How long can you expect it to take to run on an input 

size of 64? 
 C*log2(16) = 28ms   
   4c = 28ms  
  c = 7 

 
 If n = 64, let’s solve for time: 
 7*log264 = time ms 
 7*6 = 42 ms 



Time Estimation Practice Problems 
1) Assume that you are given an algorithm that runs 

in O(Nlog2N) time. Suppose it runs in 20ms for an 
input size of 16.  

 How long can you expect it to take to run on an input 
size of 64? 

 


