
Intro to Algorithm

analysis

COP 3502

Algorithm Analysis

 We will use order notation to approximate 2
things about algorithms:

 How much time they take

 How much memory (space) they use.

 We want an approximation because

 it will be nearly impossible to exactly figure out
how much time an algorithm will take on a
particular computer.

Algorithm Analysis

 The type of approximation we will be looking
for is a Big-O approximation

 A type of order notation

 Used to describe the limiting behavior of a
function, when the argument approaches a large
value.

 In simpler terms a Big-O approximation is:

An Upper bound on the growth rate of a function.

Big-O

 Assume:
 Each statement and each comparison in C takes some

constant time.

 Time and space complexity will be a function of:
 The input size (usually referred to as n)

 Since we are going for an approximation,
 we will use 2 simplifications in counting the # of

steps an algorithm takes:
1) Eliminate any term whose contribution to the total

ceases to be significant as n becomes large

2) Eliminate constant factors.

Big-O
 Only consider the most significant term

 So for : 4n2 + 3n – 5, we only look at 4n2

 Then, we get rid of the constant 4*

 And we get O(n2)

Analysis of Code Segments

 Each of the following examples illustrates how
to determine the Big-O run time of a segment
of code or a function.

 Each of these functions will be analyzed for their
runtime in terms of the input size (usually variable
n.)

 Keep in mind that run-time may be dependent on
more than one input variable.

Analysis of Code Segments: EX 1

 This is a straight-forward function to
analyze
 We only care about the simple ops in terms

of n, remember any constant # of simple
steps counts as 1.

 Let’s make a chart for the different values of
(i,j), since for each change in i,j we do a
constant amount of work.

int func1(int n) {

 x = 0;

 for (i = 1; i <= n; i++){

 for (j = 1; j <=n; j++) {

 x++;

 }

 }

 return x;

}

1 operation

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

… …

n 1

… …

n n

i j
1 1

1 2

1 3

… …

1 n

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

 So for each value of i, we do n steps.

 n + n + n +…+ n

 = n * n

 = O(n 2)

int func1(int n) {

 x = 0;

 for (i = 1; i <= n; i++){

 for (j = 1; j <=n; j++) {

 x++;

 }

 }

 return x;

}

1 operation

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

… …

n 1

… …

n n

i j
1 1

1 2

1 3

… …

1 n

i j
1 1

1 2

1 3

… …

1 n

2 1

2 2

2 3

… …

2 n

Analysis of Code Segments: EX 1

 In this situation, the first for loop runs n times, so we do n steps.

 After it finishes, we run the second for loop which also runs n
times.

 Our total runtime is on the order of n+ n = 2 n.

 In order notation, we drop all leading constants, so our runtime is

 O(n)

int func2(int n) {

 x = 0;

 for (i = 1; i <= n; i++)

 x++;

 for (i = 1; i<=n; i++)

 x++;

 return x;

}

1 operation

1 operation

Analysis of Code Segments: EX 2

 Since n is changing, let origN be the original value of the
variable n in the function.

 The 1st time through the loop, n gets set to origN/2

 The 2nd time through the loop, n gets set to origN/4

 The 3rd time through the loop, n gets set to origN/8

 In general, after k loops, n get set to origN/2k

 So the algorithm ends when origN/2k = 1 approximately

int func3(int n) {

 while (n>0) {

 printf(“%d”, n%2);

 n = n/2;

 }

}

1 operation

1 operation

Analysis of Code Segments: EX 3

 So the algorithm ends when origN/2k = 1 approximately
 (where k is the number of steps)

 origN = 2k

 take log of both sides

 log2(origN) = log2(2k)

 log2(origN) = k

 So the runtime of this function is

 O(lg n)

int func3(int n) {

 while (n>0) {

 printf(“%d”, n%2);

 n = n/2;

 }

}

1 operation

1 operation

Note:
When we use logs in run-time,
we omit the base,
since for all log functions with
different
bases greater than 1,
they are all equivalent
with respect to order notation.

Analysis of Code Segments: EX 3

Math Review - Logs

 Logs – the log function is the inverse of an exponent,

 if ba = c then by definition logbc = a

 Rules:

 logba + logbc = logbac logba – logbc = logba/c

 logbac = c logba logba = logca/logcb

 b logca = a logcb babc = ba+c

 ba/bc = ba-c (ba)c = bac

 So what is log22k ?

 = k log22 , the base to the ? power = 2

 = k

Logarithms

 Sidenote:
 We never use bases for logarithms in O-notation
 This is because changing bases of logs just involves

multiplying by a suitable constant
and we don’t care about constant of proportionality for O-

notation!

 For example:
 If we have log10n and we want it in terms of log2n

We know log10n = log2n/log210
Where 1/log210 = 0.3010
Then we get log10n = 0.3010 x log2n

 In this function, i and j can increase, but they can never decrease.
 Furthermore, the code will stop when i gets to n.

 Thus, the statement i++ can never run more than n times and the statement
j++ can never run more than n times.

 Thus, the most number of times these two critical statements can run is 2n.

 It follows that the runtime of this segment of code is

 O(n)

int func4(int** array, int n) {

 int i=0, j=0;

 while (i < n) {

 while (j < n && array[i][j] == 1)

 j++;

 i++;

 }

 return j;

}

Analysis of Code Segments: EX 4

 All we did in this example is reset j to 0 at the beginning of i loop
iteration.
 Now, j can range from 0 to n for EACH value of i

 (similar to example #1),

 so the run-time is

 O(n2)

int func5(int** array, int n) {

 int i=0, j=0;

 while (i < n) {

 j=0;

 while (j < n && array[i][j] == 1)

 j++;

 i++;

 }

 return j;

}

Analysis of Code Segments: EX 5

 The amount of times the inner loop runs
is dependent on i
 The table shows how j changes w/respect to i

 The # of times the inner loop runs is the sum:

 0 + 1 + 2 + 3 + … + (n-1)

 = (n-1)n/2 = 0.5n2 + 0.5n

 So the run time is?

int func6(int array[], int n) {

 int i,j, sum=0;

 for (i=0; i<n; i++) {

 for (j=i+1; j<n; j++)

 if (array[i] > array[j])

 sum++;

 }

 return sum;

}

Analysis of Code Segments: EX 6

i j value

0 1,2,3,…,n-1 n-1

1 2,3,4,…,n-1 n-2

2 3,4,5,…,n-1 n-3

…

n-1 nothing 0

 Common Summation:

 What we have:

 O(n2)

i j value

0 1,2,3,…,n-1 n-1

1 2,3,4,…,n-1 n-2

i j value

0 1,2,3,…,n-1 n-1

i j value

0 1,2,3,…,n-1 n-1

1 2,3,4,…,n-1 n-2

2 3,4,5,…,n-1 n-3

 This runtime is in terms of sizea and sizeb.

 Clearly, similar to Example #1, we simply multiply the # of
terms in the 1st loop by the number of terms in the 2nd loop.

 Here, this is simply sizea*sizeb.

 So the runtime is?

int f7(int a[], int sizea, int b[], int sizeb) {

 int i, j;

 for (i=0; i<sizea; i++)

 for (j=0; j<sizeb; j++)

 if (a[i] == b[j])

 return 1;

 return 0;

}

Analysis of Code Segments: EX 7

O(sizea*sizeb)

 As previously discussed, a single binary search runs in O(lg n)

 where n represents the number of items in the original list you’re
searching.

 In this particular case, the runtime is?

 since we run our binary search on sizeb items exactly sizea times.

int f8(int a[], int sizea, int b[], int sizeb) {

 int i, j;

 for (i=0; i<sizea; i++) {

 if (binSearch(b, sizeb, a[i]))

 return 1;

 }

 return 0;

}

Analysis of Code Segments: EX 8

O(sizea*lg(sizeb))

 In this particular case, the runtime is?
 since we run our binary search on sizeb items exactly sizea times.

 Notice:
 that the runtime for this algorithm changes greatly if we switch the

order of the arrays. Consider the 2 following examples:

1) sizea = 1000000, sizeb = 10

2) sizea = 10, sizeb = 1000000

int f8(int a[], int sizea, int b[], int sizeb) {

 int i, j;

 for (i=0; i<sizea; i++) {

 if (binSearch(b, sizeb, a[i]))

 return 1;

 }

 return 0;

}

Analysis of Code Segments: EX 8

O(sizea*lg(sizeb))

sizea*lg(sizeb) ~ 3320000

sizea*lg(sizeb) ~ 300

Time Estimation Practice Problems

1) Algorithm A runs in O(log2n) time, and for an
input size of 16, the algorithm runs in 28 ms.
 How long can you expect it to take to run on an input

size of 64?
 C*log2(16) = 28ms
 4c = 28ms
 c = 7

 If n = 64, let’s solve for time:
 7*log264 = time ms
 7*6 = 42 ms

Time Estimation Practice Problems
1) Assume that you are given an algorithm that runs

in O(Nlog2N) time. Suppose it runs in 20ms for an
input size of 16.

 How long can you expect it to take to run on an input
size of 64?

