" &
SOHUCE

INTRO TO ALGORITHM
ANALYSIS

COP 3502

Algorithm Analysis

We will use order notation to approximate 2
things about algorithmes:

How much time they take
How much memory (space) they use.

We want an approximation because

it will be nearly impossible to exactly figure out
how much time an algorithm will take on a
particular computer.

Algorithm Analysis

The type of approximation we will be looking
for is a Big-O approximation

A type of order notation

Used to describe the limiting behavior of a

function, when the argument approaches a large
value.

In simpler terms a Big-O approximation is:

An Upper bound on the growth rate of a function.

&

Big-O

Assume:

Each statement and each comparison in C takes some
constant time.

Time and space complexity will be a function of:
The input size (usually referred to as n)

Since we are going for an approximation,
we will use 2 simplifications in counting the # of

steps an algorithm takes:

Eliminate any term whose contribution to the total
ceases to be significant as n becomes large

Eliminate constant factors. ;
&

Big-O
Only consider the most significant term
So for : 4n2+3n=75, we only look at 4n2

Then, we get rid of the constant 4*
And we get O(n?)

Analysis of Code Segments

Each of the following examples illustrates how
to determine the Big-O run time of a segment
of code or a function.

Each of these functions will be analyzed for their
runtime in terms of the input size (usually variable
n.)

Keep in mind that run-time may be dependent on
more than one input variable.

&

Analysis of Code Segments:

int funcl (int n) {
x =0;
for (1 = 1; 1 <= n; i++) {
for (j = 1; j <=n; j++) {

x++; “~"“Toperation
}

return x;

This is a straight-forward function to
analyze

We only care about the simple ops in terms
of n, remember any constant # of simple
steps counts as 1.

Let’s make a chart for the different values of
(i,j), since for each change ini,j we do a
constant amount of work.

N N N R ¢

R RPN,

w N R,

W N = 35

Analysis of Code Segments:

int funcl (int n) {

;
x = 0; .
for (1 = 1; 1 <= n; i++){

. . . 1
for (J =1; j <=n; j++) { .
x++; “~1operation

} 1
} 2
return x; :
2
So for each value of i, we do n steps.
2

n+n+n+..+n

=n*n o

= 0(n ?)

w N R,

W N =B 5

Analysis of Code Segments: EX 2

int func2 (int n) {
x = 0;
for (i 1; i <= n; i++)

X++ ; " 1operation

for (1 1l; i<=n; i++)

x++; “1operation

return x;

In this situation, the first for loop runs n times, so we do n steps.

After it finishes, we run the second for loop which also runs n
times.

Our total runtime is on the order of n+ n=2 n.

In order notation, we drop all leading constants, so our runtime is

O(n) &

Analysis of Code Segments: EX 3

int func3(int n) {

while (n>0) {
printf (“%d”, n%2) ; ¢ENGpEraHGREY
n =n/2; "1operation

Since n is changing, let origN be the original value of the
variable n in the function.

The 15t time through the loop, n gets set to origN/2

The 2" time through the loop, n gets set to origN/4

The 3" time through the loop, n gets set to origN/8

In general, after k loops, n get set to origN/2k

So the algorithm ends when origN/2k = 1 approximate@

Analysis of Code Segments: EX 3

int func3(int n) {

while (n>0) ({
printf (“%d”, n%2) ; ¢ENGpEraHGREY
n =n/2; Toperation

So the algorithm ends when origN/2* = 1 approximately
(where k is the number of steps)

. " Note:
= origN =2 When we use logs in run-time,
take log of both sides we omit the base,
since for all log functions with
i X k
7 Iogz(orlgN) I Iog2(2) different
- Iogz(origN) =k bases greater than 1,
: : 4 : they are all equivalent
So the runtime of this function is Y ,

/ with respect to order notatior@_
O(lg n) ‘

Math Review - Logs

" Logs — the log function is the inverse of an exponent,
if b2 =c then by definition log,c = a

Rules:

log,a + log,c = log,ac log,a — log,c =log,a/c
)= log, ac = clog,a log,a = log.a/log_ b

b log.a — 3 log b b2b¢ = patc

ba/bc = pa-¢ (ba)c = pbac

" So what is log,2* ?
= =klog,2, the base to the ? power = 2
H - k

Logarithms

Sidenote:

We never use bases for logarithms in O-notation

This is because changing bases of logs just involves
multiplying by a suitable constant

and we don’t care about constant of proportionality for O-
notation!

For example:

If we have log,,n and we want it in terms of log,n
We know log,,n = log,n/log,10
Where 1/log,10 = 0.3010
Then we get log,,n = 0.3010 x log,n

Analysis of Code Segments: EX 4

int func4d (int** array, int n) ({
int i=0, j3=0;
while (1 < n) {
while (jJ < n && array[i][]] == 1)
J++;

i+4; A—

return j;

}

In this function, i and j can increase, but they can never decrease.
Furthermore, the code will stop when i gets to n.

Thus, the statement i++ can never run more than n times and the statement
j++ can never run more than n times.

Thus, the most number of times these two critical statements can run is 2n.
It follows that the runtime of this segment of code is %
S

O(n)

Analysis of Code Segments:

int funcS5(int** array, int n) ({
int i=0, j3=0;
while (1 < n) {
j=0; —

while (jJ < n && array[i][]] == 1)

return j;

All we did in this example is reset j to 0 at the beginning of i loop
iteration.

Now, j can range from 0 to n for EACH value of i

(similar to example #1),

so the run-time is &

O(n?)

Analysis of Code Segments: EX 6

int funcé6(int array[], int n) {

int i,j, sum=0; i J value
for (i=0; i<n; i++) { 0 123...n-1 n-
for (j=i+l; j<n; Jj++) 1 234,.,n1 n-2
if (array[i] > array[]j]) 2 345,..,n1 n-3
- sum++;
} n-1 nothing 0
return sum;
The amount of times the inner loop runs Common Summation:
is dependent on i - - nn+1)
The table shows how j changes w/respect to i z v 2
The # of times the inner loop runs is the sum: L
O+1+2+3+..+(n-1) What we have:
=(n-1)n/2 =0.5n?+ 0.5n — e %
So the run time is? Q(n_zl Z o 2 S

=1

Analysis of Code Segments: EX 7

int £7(int a[], int sizea, int b[], int sizeb) {
int 1, j;
for (1=0; i<sizea; i++)
for (j=0; j<sizeb; j++)

if (a[i] == b[]])
return 1; -

return 0;

This runtime is in terms of sizea and sizeb.

Clearly, similar to Example #1, we simply multiply the # of
terms in the 15t loop by the number of terms in the 2" loop.

Here, this is simply sizea*sizeb.

So the runtime is? O(sizea*sizeb)

Analysis of Code Segments: EX &

int £8 (int a[], int sizea, int b[], int sizeb) {
int i, j;

for (1=0; i<sizea; i++) {
if ((b, sizeb, a[i]))-

return 1;

}

return 0O;

As previously discussed, a single binary search runs in Oflg n)

where n represents the number of items in the original list you're
searching.

In this particular case, the runtime is? O(sizea*Ig(sizeb))

since we run our binary search on sizeb items exactly sizea times.

&

Analysis of Code Segments: EX &

int £8 (int a[], int sizea, int b[], int sizeb) {
int i, j;

for (i=0; i<sizea; i++) {
if (
return 1;

}

return 0O;

In this particular case, the runtime is? Q(sizea*Ig(sizeb))
since we run our binary search on sizeb items exactly sizea times.
Notice:

that the runtime for this algorithm changes greatly if we switch the
order of the arrays. Consider the 2 following examples:

sizea = 1000000, sizeb = 10 sizea*Ig(sizeb) ~ 3320000 %
sizea = 10, sizeb = 1000000 sizea*Ig(sizeb) ~ 300

Time Estimation Practice Problems

Algorithm A runs in O(log,n) time, and for an
input size of 16, the algorithm runs in 28 ms.

How long can you expect it to take to run on an input
size of 647

C*log,(16) = 28ms
- 4c =28ms
2>c=7

If n = 64, let’s solve for time:
7*log,64 = time ms
76 =42 ms

Time Estimation Practice Problems

Assume that you are given an algorithm that runs
in O(Nlog,N) time. Suppose it runs in 20ms for an
input size of 16.

How long can you expect it to take to run on an input
size of 647

