

COP 3502

Algorithm Analysis

- We will use order notation to approximate 2 things about algorithms:
 - How much time they take
 - How much memory (space) they use.
- We want an approximation because
 - it will be nearly <u>impossible</u> to exactly figure out how much time an algorithm will take on a particular computer.

Algorithm Analysis

- The type of approximation we will be looking for is a Big-O approximation
 - A type of order notation
 - Used to describe the limiting behavior of a function, when the argument approaches a large value.
 - In simpler terms a Big-O approximation is:
 - > An Upper bound on the growth rate of a function.

Big-O

- Assume:
 - Each statement and each comparison in C takes some constant time.
- Time and space complexity will be a function of:
 - The input size (usually referred to as <u>n</u>)
- Since we are going for an approximation,
 - we will use 2 simplifications in counting the # of steps an algorithm takes:
 - Eliminate any term whose contribution to the total ceases to be significant as n becomes large
 - Eliminate constant factors.

Big-O

- Only consider the most significant term
 - **So for**: $4n^2 + 3n 5$, we only look at $4n^2$
 - Then, we get rid of the constant 4*
 - And we get O(n²)

- Each of the following examples illustrates how to determine the Big-O run time of a segment of code or a function.
 - Each of these functions will be analyzed for their runtime in terms of the input size (usually variable n.)
 - Keep in mind that run-time may be dependent on more than one input variable.

- This is a straight-forward function to analyze
 - We only care about the simple ops in terms of n, remember any constant # of simple steps counts as 1.
 - Let's make a chart for the different values of (i,j), since for each change in i,j we do a constant amount of work.

i	j
1	1
1	2
1	3
•••	•••
1	n
2	1
	2
2	3
	•••
2	n
	•••
n	1
	•••
n	n

- So for each value of i, we do n steps.
- n + n + n + ... + n
- = n * n
- $= O(n^2)$

i	j
1	1
1	2
1	3
•••	•••
1	n
2	1
2	2
2	3
2	n
n	1
•••	
n	n

- In this situation, the first for loop runs n times, so we do n steps.
- After it finishes, we run the second for loop which also runs n times.
- Our total runtime is on the order of n+n=2n.
 - In order notation, we drop all leading constants, so our runtime is
 - = O(n)

- Since n is changing, let origN be the original value of the variable n in the function.
 - The 1st time through the loop, n gets set to origN/2
 - The 2nd time through the loop, n gets set to origN/4
 - The 3rd time through the loop, n gets set to origN/8
 - In general, after k loops,
 n get set to origN/2^k
- So the algorithm ends when $origN/2^k = 1$ approximate

- So the algorithm ends when origN/2^k = 1 approximately
 - (where k is the number of steps)
 - \rightarrow origN = 2^k
 - take log of both sides
 - $\rightarrow \log_2(\text{origN}) = \log_2(2^k)$
 - $\rightarrow \log_2(\text{origN}) = k$
 - So the runtime of this function is
 - O(lg n)

Note:

When we use logs in run-time, we omit the base, since for all log functions with different bases greater than 1, they are all equivalent with respect to order notation.

Math Review - Logs

- Logs the log function is the inverse of an exponent,
 - if b^a = c then by definition log_bc = a

Rules:

$$\log_{b}a + \log_{b}c = \log_{b}ac$$

$$\log_b a^c = c \log_b a$$

$$b^{a}/b^{c} = b^{a-c}$$

$$log_b a - log_b c = log_b a/c$$

$$log_b a = log_c a / log_c b$$

$$b^ab^c = b^{a+c}$$

$$(b^a)^c = b^{ac}$$

- So what is log₂2^k?
- = k log₂2, the base to the ? power = 2
- = k

Logarithms

Sidenote:

- We never use bases for logarithms in O-notation
- This is because changing bases of logs just involves multiplying by a suitable constant
 - and we don't care about constant of proportionality for Onotation!
- For example:
- If we have log₁₀n and we want it in terms of log₂n
 - \triangleright We know $\log_{10} n = \log_2 n / \log_2 10$
 - \rightarrow Where $1/\log_2 10 = 0.3010$
 - Then we get $log_{10}n = 0.3010 \times log_2n$

- In this function, i and j can increase, but they can never decrease.
 - Furthermore, the code will stop when i gets to n.
 - Thus, the statement i++ can never run more than n times and the statement j++ can never run more than n times.
 - Thus, the most number of times these two critical statements can run is 2n.
 - It follows that the runtime of this segment of code is


```
int func5(int** array, int n) {
   int i=0, j=0;
   while (i < n) {
      j=0;
      while (j < n && array[i][j] == 1)</pre>
          j++;
      i++;
   return j;
```

- All we did in this example is reset j to 0 at the beginning of i loop iteration.
 - Now, j can range from 0 to n for EACH value of i
 - (similar to example #1),
 - so the run-time is


```
int func6(int array[], int n) {
   int i,j, sum=0;
   for (i=0; i<n; i++) {
      for (j=i+1; j<n; j++)
        if (array[i] > array[j])
        sum++;
   }
   return sum;
}
```

i	j	value
0	1,2,3,,n-1	n-1
1	2,3,4,,n-1	n-2
2	3,4,5,,n-1	n-3
•••		
n-1	nothing	0

- The amount of times the inner loop runs is dependent on i
 - The table shows how j changes w/respect to i
 - The # of times the inner loop runs is the sum:
 - 0+1+2+3+...+(n-1)
 - $= (n-1)n/2 = 0.5n^2 + 0.5n$
 - So the run time is?

O(n²)

Common Summation:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

What we have:

$$\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

```
int f7(int a[], int sizea, int b[], int sizeb) {
   int i, j;
   for (i=0; i<sizea; i++)
        for (j=0; j<sizeb; j++)
        if (a[i] == b[j])
            return 1;
   return 0;
}</pre>
```

- This runtime is in terms of sizea and sizeb.
- Clearly, similar to Example #1, we simply multiply the # of terms in the 1st loop by the number of terms in the 2nd loop.
- Here, this is simply sizea*sizeb.
- So the runtime is? O(sizea*sizeb)


```
int f8(int a[], int sizea, int b[], int sizeb) {
   int i, j;

   for (i=0; i<sizea; i++) {
      if (binSearch(b, sizeb, a[i]))
        return 1;
   }
   return 0;
}</pre>
```

- As previously discussed, a single binary search runs in O(lg n)
 - where n represents the number of items in the original list you're searching.
- In this particular case, the runtime is? O(sizea*lg(sizeb))
 - since we run our binary search on sizeb items exactly sizea times.


```
int f8(int a[], int sizea, int b[], int sizeb) {
   int i, j;

   for (i=0; i<sizea; i++) {
      if (binSearch(b, sizeb, a[i]))
        return 1;
   }
   return 0;
}</pre>
```

- In this particular case, the runtime is? O(sizea*lg(sizeb))
 - since we run our binary search on sizeb items exactly sizea times.

Notice:

that the runtime for this algorithm changes greatly if we switch the order of the arrays. Consider the 2 following examples:

```
    sizea = 1000000, sizeb = 10
    sizea*lg(sizeb) ~ 3320000
    sizea = 10, sizeb = 1000000
    sizea*lg(sizeb) ~ 300
```

Time Estimation Practice Problems

- Algorithm A runs in O(log₂n) time, and for an input size of 16, the algorithm runs in 28 ms.
 - How long can you expect it to take to run on an input size of 64?
 - $C*log_2(16) = 28ms$
 - \rightarrow 4c = 28ms
 - \rightarrow c = 7
 - If n = 64, let's solve for time:
 - > 7*log₂64 = time ms
 - 7*6 = 42 ms

Time Estimation Practice Problems

- 1) Assume that you are given an algorithm that runs in O(Nlog₂N) time. Suppose it runs in 20ms for an input size of 16.
 - How long can you expect it to take to run on an input size of 64?

