
Linked List Variations

COP 3502

Linked List Practice Problem

 Write a recursive function that deletes every other node in
the linked list pointed to by the input parameter head.
(Specifically, the 2nd 4th 6th etc. nodes are deleted)
 From Fall 2009 Foundation Exam

 void delEveryOther(node* head){

 if (head == NULL || head->next == NULL) return;

 node *temp = head->next;

 head->next = temp->next;

 free(temp);

 delEveryOther(head->next);

}

Linked List Practice Problem

 Write an iterative function that deletes every other node in
the linked list pointed to by the input parameter head.
(Specifically, the 2nd 4th 6th etc. nodes are deleted)
 From Fall 2009 Foundation Exam

 void delEveryOther(struct node *head) {

 struct node* curr = head;

 while(curr != NULL && curr->next != NULL) {

 struct ll* temp = curr->next;

 curr->next = temp->next;

 curr=temp->next;

 free(temp);

 }

}

Linked List Variations

 There are 3 basic types of linked lists:

 Singly-linked lists

 Doubly-Linked Lists

 Circularly-Linked Lists

 We can also have a linked lists of linked lists

Circularly Linked Lists
 Singly Linked List:

 Circularly-Linked List

2

head

 1 3 4

2

head

 1 3 4 NULL

Circularly Linked Lists
 Why use a Circularly Linked List?

 It may be a natural option for lists that are
naturally circular, such as the corners of a polygon

 OR you may wish to have a queue, where you
want easy access to the front and end of your list.

For this reason, most circularly linked lists are
implemented as follows:

– With a pointer to the end of the list (tail), we can easily get to
the front of the list (tail->next)

1

tail

 4 2 3

Circularly Linked List

 Consider inserting to the front of a circular
linked list:

 The first node is the node next to the tail node

 We want to insert the new node between the tail
node and the first node.

1

tail

 4 2 3

front

We want to
insert here

Circularly Linked List

 Steps:
 Create a new node in memory, set its data to val
 Make the node point to itself
 if tail is empty, then return this node, it’s the only one in the list
 If it’s not the only node, then it’s next is tail->next
 and tail->next should now point to the new node.

1

tail

 4 2 3

front

We want to
insert here

 6
temp

Circularly Linked List

 Steps:
 Create a new node in memory, set its data to val

 Make the node point to itself

 if tail is empty, then return this node, it’s the only one in the list

 If it’s not the only node, then it’s next is tail->next

 and tail->next should now point to the new node.

 Resulting List:

1

tail

 4 2 3

front

 6

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 // Set the new node’s next to itself (circular!)

 // If the list is empty, return new node

 // Set our new node’s next to the front

 // Set tail’s next to our new node

 // Return the end of the list

}

typedef struct node {

 int data;

 node *next;

} node;

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 // If the list is empty, return new node

 // Set our new node’s next to the front

 // Set tail’s next to our new node

 // Return the end of the list

}

typedef struct node {

 int data;

 node *next;

} node;

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 // Set our new node’s next to the front

 // Set tail’s next to our new node

 // Return the end of the list

}

typedef struct node {

 int data;

 node *next;

} node;

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 if (tail == NULL) return temp;

 // Set our new node’s next to the front

 // Set tail’s next to our new node

 // Return the end of the list

}

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 if (tail == NULL) return temp;

 // Set our new node’s next to the front

 temp->next = tail->next;

 // Set tail’s next to our new node

 // Return the end of the list

}

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 if (tail == NULL) return temp;

 // Set our new node’s next to the front

 temp->next = tail->next;

 // Set tail’s next to our new node

 tail->next = temp;

 // Return the end of the list

}

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 if (tail == NULL) return temp;

 // Set our new node’s next to the front

 temp->next = tail->next;

 // Set tail’s next to our new node

 tail->next = temp;

 // Return the end of the list

}

Circularly Linked List

node* AddFront(node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 if (tail == NULL) return temp;

 // Set our new node’s next to the front

 temp->next = tail->next;

 // Set tail’s next to our new node

 tail->next = temp;

 // Return the end of the list

 return tail;

}

Circularly Linked List
 Inserting a node at the End of a Circular Linked List
 The new node will be placed just after the tail node

(which is the last node in the list)

 So again the new node will be inserted between the tail
node and the front node.

 The only difference with AddFront, is that now we need
to change where tail points after we add the node.
That’s the only difference, so the code is pretty similar.

1

tail

 4 2 3

front

We want to
insert here

Circularly Linked List

struct node* AddEnd(struct node* tail, int val) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = val;

 // Set the new node’s next to itself (circular!)

 temp->next = temp;

 // If the list is empty, return new node

 if (tail == NULL) return temp;

 // Set our new node’s next to the front

 temp->next = tail->next;

 // Set tail’s next to our new node

 tail->next = temp;

 // Return the new end of the list

 return temp;

}

typedef struct node {

 int data;

 node *next;

} node;

The only line of code
that’s different

Circularly Linked List

 Deleting the First Node in a Circular Linked List

 The first node can be deleted by simply replacing the
next field of tail node with the next filed of the first
node:

temp = tail->next; // This is the front

tail->next = temp->next; // This is the node after front

free(temp);

1

tail

 4 2 3

front temp

Circularly Linked List
 Deleting the Last Node in a Circular Linked List

 This is a little more complicated

The list has to be traversed to reach the second to last
node.

This had to become the tail node, and its next field has to
point to the first node.

1

tail

 4 2 3

curr tail

Doubly Linked List

 Doubly Linked List Node:

 DoublyLinkedList:

 Each node in the list contains a reference to both:

 the node which immediately precedes it AND

to the node which follows it in the list.

head

 1 2 3 4

typedef struct node {

 int data;

 node *next;

 node *prev;

} node;

prev data next

 1

prev data next

Doubly Linked List

 DoublyLinkedList:

 Advantages:

Allows searching in BOTH directions

Insertion and Deletion can be easily done with a single
pointer.

head

 1 2 3 4

typedef struct node {

 int data;

 node *next;

 node *prev;

} node;

prev data next

Doubly Linked List

 Circular Doubly Linked List

 Same as a circular doubly linked list

 BUT the nodes in the list are doubly linked, so the
last node connects to the front AND the first node
connects to the last.

head

 1 2 3 4

typedef struct node {

 int data;

 node *next;

 node *prev;

} node;

prev data next

Doubly Linked List - Insertion

 Code:
 temp->prev = curr;
 temp->next = curr->next;
 curr->next->prev = temp;
 curr->next = temp;

 Disadvantage of Doubly Linked Lists:
 extra space for extra link fields
 maintaining the extra link during insertion and deletion

head

 1 2 4 5

We want to
insert here 3

curr

temp

Doubly Linked List - Deletion

 Code:

 curr->prev->next = curr->next;

 curr->next->prev = curr->prev;

 free(curr);

 (Assuming curr->prev and curr->next are NOT NULL)

head

 1 2 3 4

curr

A Linked List of Linked Lists

 Linked Lists can be part of more complicated
data structures.

 Consider the situation where we have a linked list of
musical artists

 It might also make sense that each artist has a linked
list of songs (or albums) stored

head

Michael
Jackson U2 Madonna Weezer

cdList cdList cdList cdList

Beat It One Cherish Buddy
Holly

Like a
Prayer

Say it
aint so

Sweetest
Thing

Thriller

Billy
Jean Memories

struct CDNode {

 char title[50];

 struct CDNode *next;

} ;

struct ArtistNode {

 char first[30];

 char last[30];

 struct CDNode *cdList;

 struct ArtistNode *next;

} ;

Practice Problem

 Write a function which accepts a linear linked
list J and converts it to a circular linked list.

 Note this means: J is a pointer to the front of the
list.

typedef struct node {

 int data;

 node *next;

} node;

node *convert (node *J) {

}

