
Linked List Variations 

COP 3502 



Linked List Practice Problem 

 Write a recursive function that deletes every other node in 
the linked list pointed to by the input parameter head.  
(Specifically, the 2nd 4th 6th etc. nodes are deleted)   
 From Fall 2009 Foundation Exam 

 
 void delEveryOther(node* head){ 

 if (head == NULL || head->next == NULL) return; 

 

 node *temp = head->next; 

 

 head->next = temp->next; 

 

   free(temp); 

 

 delEveryOther(head->next); 

} 



Linked List Practice Problem 

 Write an iterative function that deletes every other node in 
the linked list pointed to by the input parameter head.  
(Specifically, the 2nd 4th 6th etc. nodes are deleted)   
 From Fall 2009 Foundation Exam 

 
 void delEveryOther(struct node *head) {  

 struct node* curr = head; 

  

 while(curr != NULL && curr->next != NULL) { 

  struct ll* temp = curr->next;  

  curr->next = temp->next;   

  curr=temp->next;   

  free(temp);  

 } 

} 



Linked List Variations 

 There are 3 basic types of linked lists: 

 Singly-linked lists 

 Doubly-Linked Lists 

 Circularly-Linked Lists 

 

 We can also have a linked lists of linked lists 

 



Circularly Linked Lists 
 Singly Linked List: 

 

 

 

 Circularly-Linked List 

2  

head 

 1             3          4          

2  

head 

 1             3            4       NULL 



Circularly Linked Lists 
 Why use a Circularly Linked List? 

 It may be a natural option for lists that are 
naturally circular, such as the corners of a polygon 

 OR you may wish to have a queue, where you 
want easy access to the front and end of your list. 

For this reason, most circularly linked lists are 
implemented as follows:  

– With a pointer to the end of the list (tail), we can easily get to 
the front of the list (tail->next) 

1  

tail 

 4             2          3          



Circularly Linked List 

 Consider inserting to the front of a circular 
linked list: 

 The first node is the node next to the tail node 

 We want to insert the new node between the tail 
node and the first node. 

1  

tail 

 4             2          3          

front 

We want to 
insert here 



Circularly Linked List 

 Steps: 
 Create a new node in memory, set its data to val 
 Make the node point to itself 
 if tail is empty, then return this node, it’s the only one in the list 
 If it’s not the only node, then it’s next is tail->next 
 and tail->next should now point to the new node. 

1  

tail 

 4             2          3          

front 

We want to 
insert here 

 6         
temp 



Circularly Linked List 

 Steps: 
 Create a new node in memory, set its data to val 

 Make the node point to itself 

 if tail is empty, then return this node, it’s the only one in the list 

 If it’s not the only node, then it’s next is tail->next 

 and tail->next should now point to the new node. 

 Resulting List: 

1  

tail 

 4             2          3          

front 

 6         



Circularly Linked List 

 
node* AddFront(node* tail, int val) { 

    // Create the new node 

 

    // Set the new node’s next to itself (circular!) 

 

    // If the list is empty, return new node 

 

    // Set our new node’s next to the front 

 

    // Set tail’s next to our new node 

 

    // Return the end of the list 

} 

typedef struct node { 

   int data; 

   node *next; 

} node; 



Circularly Linked List 

 
node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

 

    // If the list is empty, return new node 

 

    // Set our new node’s next to the front 

 

    // Set tail’s next to our new node 

 

    // Return the end of the list 

} 

typedef struct node { 

   int data; 

   node *next; 

} node; 



Circularly Linked List 

 
node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

 

    // If the list is empty, return new node 

 

    // Set our new node’s next to the front 

 

    // Set tail’s next to our new node 

 

    // Return the end of the list 

} 

typedef struct node { 

   int data; 

   node *next; 

} node; 



Circularly Linked List 

 

node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

 

    // If the list is empty, return new node 

    if (tail == NULL) return temp; 

 

    // Set our new node’s next to the front 

 

    // Set tail’s next to our new node 

 

    // Return the end of the list 

} 



Circularly Linked List 

 

node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

 

    // If the list is empty, return new node 

    if (tail == NULL) return temp; 

 

    // Set our new node’s next to the front 

    temp->next = tail->next; 

 

    // Set tail’s next to our new node 

 

    // Return the end of the list 

} 



Circularly Linked List 

 

node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

 

    // If the list is empty, return new node 

    if (tail == NULL) return temp; 

 

    // Set our new node’s next to the front 

    temp->next = tail->next; 

 

    // Set tail’s next to our new node 

    tail->next = temp; 

 

    // Return the end of the list 

} 



Circularly Linked List 

 

node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

 

    // If the list is empty, return new node 

    if (tail == NULL) return temp; 

 

    // Set our new node’s next to the front 

    temp->next = tail->next; 

 

    // Set tail’s next to our new node 

    tail->next = temp; 

 

    // Return the end of the list 

} 



Circularly Linked List 

 

node* AddFront(node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

 

    // If the list is empty, return new node 

    if (tail == NULL) return temp; 

 

    // Set our new node’s next to the front 

    temp->next = tail->next; 

 

    // Set tail’s next to our new node 

    tail->next = temp; 

 

    // Return the end of the list 

    return tail; 

} 



Circularly Linked List 
 Inserting a node at the End of a Circular Linked List 
 The new node will be placed just after the tail node  

(which is the last node in the list) 

 So again the new node will be inserted between the tail 
node and the front node. 

 The only difference with AddFront, is that now we need 
to change where tail points after we add the node. 
That’s the only difference, so the code is pretty similar. 

 

1  

tail 

 4             2          3          

front 

We want to 
insert here 



Circularly Linked List 

 
struct node* AddEnd(struct node* tail, int val) { 

    // Create the new node 

    node *temp = (node*)malloc(sizeof(node)); 

    temp->data = val; 

    // Set the new node’s next to itself (circular!) 

    temp->next = temp; 

    // If the list is empty, return new node 

    if (tail == NULL) return temp; 

 

    // Set our new node’s next to the front 

    temp->next = tail->next; 

    // Set tail’s next to our new node 

    tail->next = temp; 

 

    // Return the new end of the list 

    return temp; 

} 

 

typedef struct node { 

   int data; 

   node *next; 

} node; 

The only line of code  
that’s different 



Circularly Linked List 

 Deleting the First Node in a Circular Linked List 

 The first node can be deleted by simply replacing the 
next field of tail node with the next filed of the first 
node: 

temp = tail->next;  // This is the front 

tail->next = temp->next;  // This is the node after front 

free(temp); 

 

1  

tail 

 4             2          3          

front temp 



Circularly Linked List 
 Deleting the Last Node in a Circular Linked List 

 This is a little more complicated 

The list has to be traversed to reach the second to last 
node. 

This had to become the tail node, and its next field has to 
point to the first node. 

1  

tail 

 4             2          3          

curr tail 



Doubly Linked List 

 Doubly Linked List Node: 

 

 

 DoublyLinkedList: 

 

 

 

 Each node in the list contains a reference to both: 

 the node which immediately precedes it AND  

to the node which follows it in the list. 

head 

       1             2             3             4      

typedef struct node { 

   int data; 

   node *next; 

   node *prev; 

} node; 

prev data next 

       1      

prev  data  next 



Doubly Linked List 

 DoublyLinkedList: 

 Advantages: 

Allows searching in BOTH directions 

Insertion and Deletion can be easily done with a single 
pointer. 

head 

       1             2             3             4      

typedef struct node { 

   int data; 

   node *next; 

   node *prev; 

} node; 

prev data next 



Doubly Linked List 

 Circular Doubly Linked List 

 Same as a circular doubly linked list 

 BUT the nodes in the list are doubly linked, so the 
last node connects to the front AND the first node 
connects to the last. 

head 

       1             2             3             4      

typedef struct node { 

   int data; 

   node *next; 

   node *prev; 

} node; 

prev data next 



Doubly Linked List - Insertion 

 Code: 
 temp->prev = curr; 
 temp->next = curr->next; 
 curr->next->prev = temp; 
 curr->next = temp; 

 Disadvantage of Doubly Linked Lists: 
 extra space for extra link fields 
 maintaining the extra link during insertion and deletion 

head 

       1             2             4             5      

We want to 
insert here        3      

curr 

temp 



Doubly Linked List - Deletion 

 Code: 

 curr->prev->next = curr->next; 

 curr->next->prev = curr->prev; 

 free(curr); 

 (Assuming curr->prev and curr->next are NOT NULL) 

head 

       1             2             3             4      

curr 



A Linked List of Linked Lists 

 Linked Lists can be part of more complicated 
data structures. 

 Consider the situation where we have a linked list of 
musical artists 

 It might also make sense that each artist has a linked 
list of songs (or albums) stored 

 



head 

                                       
Michael 
Jackson U2 Madonna              Weezer 

cdList cdList cdList cdList 

Beat It One Cherish Buddy 
Holly 

Like a 
Prayer 

Say it 
aint so 

Sweetest 
Thing 

Thriller 

Billy 
Jean Memories 

struct CDNode { 

   char title[50]; 

   struct CDNode *next; 

} ; 

struct ArtistNode { 

   char first[30]; 

   char last[30]; 

   struct CDNode *cdList; 

   struct ArtistNode *next; 

} ; 



Practice Problem 

 Write a function which accepts a linear linked 
list J and converts it to a circular linked list. 

 Note this means:  J is a pointer to the front of the 
list. 

typedef struct node { 

   int data; 

   node *next; 

} node; 

node *convert (node *J) { 

 

 

 

 

 

 

 

 

} 


