" &
SHUCF
LINKED LIST VARIATIONS

COP 3502

Linked List Practice Problem

Write a recursive function that deletes every other node in
the linked list pointed to by the input parameter head.
(Specifically, the 2nd 4th 6t etc. nodes are deleted)

From Fall 2009 Foundation Exam

void delEveryOther (node* head) {
if (head == NULL || head->next == NULL) return;

node *temp = head->next;
head->next = temp->next;
free (temp) ;

delEveryOther (head->next) ;

Linked List Practice Problem

Write an iterative function that deletes every other node in
the linked list pointed to by the input parameter head.
(Specifically, the 2nd 4th 6t etc. nodes are deleted)

From Fall 2009 Foundation Exam

void delEveryOther (struct node *head) {
struct node* curr = head;

while (curr !'= NULL && curr->next !'= NULL) {
struct 11* temp = curr->next;
curr->next = temp->next;
curr=temp->next;
free (temp) ;

}

Linked List Variations

There are 3 basic types of linked lists:
Singly-linked lists
Doubly-Linked Lists
Circularly-Linked Lists

We can also have a linked lists of linked lists

Circularly Linked Lists
= Singly Linked List:

W

= Circularly-Linked List

Circularly Linked Lists

* Why use a Circularly Linked List?

It may be a natural option for lists that are
naturally circular, such as the corners of a polygon

OR you may wish to have a queue, where you
want easy access to the front and end of your list.

» For this reason, most circularly linked lists are

implemented as follows:

With a pointer to the end of the list (tail), we can easily get to
the front of the list (tail->next)

Skl

A

Circularly Linked List

" Consider inserting to the front of a circular
linked list:

The first node is the node next to the tail node

We want to insert the new node between the tail
node and the first node.

We want to
insert here

Circularly Linked List

= Steps:
Create a new node in memory, set its data to val
Make the node point to itself
if tail is empty, then return this node, it’s the only one in the list
If it’s not the only node, then it’s next is tail->next
and tail->next should now point to the new node.

We want l{)
insert her

Circularly Linked List

= Steps:
Create a new node in memory, set its data to val
Make the node point to itself
if tail is empty, then return this node, it’s the only one in the list
If it’s not the only node, then it’s next is tail->next
and tail->next should now point to the new node.

= Resulting List:

fr?nt

typedef struct node {

Circularly Linked List int data;

node *next;
} node;

node* AddFront (node* tail, int wval) {
// Create the new node

// Set the new node’s next to itself (circular!)

// If the list is empty, return new node

// Set our new node’s next to the front
// Set tail’s next to our new node

// Return the end of the list

typedef struct

Circularly Linked List int data;

node *next;
} node;

node* AddFront (node* tail, int wval) {
// Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)

// If the list is empty, return new node

// Set our new node’s next to the front
// Set tail’s next to our new node

// Return the end of the list

o - £ typedef struct
Circularly Linked List int data;
} node;

node* AddFront (node* tail, int wval) {
// Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node

// Set our new node’s next to the front
// Set tail’s next to our new node

// Return the end of the list

node* AddFront (node* tail, int wval) {

| // Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node’s next to the front

// Set tail’s next to our new node

// Return the end of the list

node* AddFront (node* tail, int wval) {

| // Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node’s next to the front
temp->next = tail->next;

// Set tail’s next to our new node

// Return the end of the list

node* AddFront (node* tail, int wval) {

| // Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node’s next to the front
temp->next = tail->next;

// Set tail’s next to our new node
tail->next = temp;

// Return the end of the list

node* AddFront (node* tail, int wval) {

| // Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node’s next to the front
temp->next = tail->next;

// Set tail’s next to our new node
tail->next = temp;

// Return the end of the list

node* AddFront (node* tail, int wval) {

| // Create the new node
node *temp = (node*)malloc(sizeof (node)) ;
temp->data = val;

// Set the new node’s next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node’s next to the front
temp->next = tail->next;

// Set tail’s next to our new node
tail->next = temp;

// Return the end of the list

Circularly Linked List

" Inserting a node at the End of a Circular Linked List
The new node will be placed just after the tail node
» (which is the last node in the list)

So again the new node will be inserted between the tail
node and the front node.

The only difference with AddFront, is that now we need
to change where tail points after we add the node.

»That’s the only difference, so the code is pretty similar.

We want to
insert here

typedef struct node {

Circularly Linked List int data;

node *next;
} node;

struct node* AddEnd (struct node* tail, int wval) {
// Create the new node
node *temp = (node*)malloc(sizeof (node))
temp->data = wval;
// Set the new node’s next to itself (circular!)
temp->next = temp;
// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node’s next to the front
temp->next = tail->next;

// Set tail’s next to our new node
tail->next = temp;

// Return the new end of the list

The only line of code

that’s different

Circularly Linked List

* Deleting the First Node in a Circular Linked List

The first node can be deleted by simply replacing the
next field of tail node with the next filed of the first
node:

»temp = tail->next; // This is the front
»tail->next = temp->next; // This is the node after front

»free(temp);

Circularly Linked List
" Deleting the Last Node in a Circular Linked List

This is a little more complicated

»The list has to be traversed to reach the second to last
node.

»This had to become the tail node, and its next field has to
point to the first node.

Doubly Linked List

typedef struct node {

Doubly Linked List Node: int data;

|1‘——>
} node;

prev data next

node *next;

node *prev;

DoublyLinkedList:

head i\

)6

1

S| 3 Ra=a S X =S EY RS EY Ba

prev data next

Each node in the list contains a reference to both:

the node which immediately precedes it AND
to the node which follows it in the list. @

Doubly Linked List

typedef struct node {
int data;

node *next;

DoublyLinkedList: node *prev;

} node;

Advantages:
Allows searching in BOTH directions
Insertion and Deletion can be easily done with a single

head pointer.
Y-+ 1 _Z IzI-Z |3|-Z |4|_9<

prev data next

&

Doubly Linked List

typedef struct node {
int data;
node *next;

node *prev;
} node;

prev data next

Circular Doubly Linked List
Same as a circular doubly linked list

BUT the nodes in the list are doubly linked, so the

last node connects to the front AND the first non
connects to the last. S

Doubly Linked List - Insertion

We ga nt to

\/

" Code:

temp->prev = curr;
temp->next = curr->next;
curr->next->prev = temp;
curr->next = temp;
* Disadvantage of Doubly Linked Lists:
extra space for extra link fields .
maintaining the extra link during insertion and deletion g’

Doubly Linked List - Deletion

s,

" Code:

curr->prev->next = curr->next;

curr->next->prev = curr->prev;

free(curr);

(Assuming curr->prev and curr->next are NOT NULL)

&

A Linked List of Linked Lists

Linked Lists can be part of more complicated
data structures.

Consider the situation where we have a linked list of
musical artists

It might also make sense that each artist has a linked
list of songs (or albums) stored

Michael
Jjackson | T U2 | =T/ Madonna | —> Weezer | 4X
cdList cdList cdList cdList
\ \ \ \
Beat It One Cherish Buddy
Holly
v Y v v
Thriller SWeetest Like a Say it
Thing Prayer aint so
v | |
Billy X N v
Jean Memories
| |

X X

struct ArtistNode {
char first[30];
char last[30];
struct CDNode *cdList;
struct ArtistNode *next;

struct CDNode {
char title[50];

struct CDNode *next;

} o

typedef struct node {

Practice Problem int data;

node *next;
} node;

Write a function which accepts a linear linked
list] and converts it to a circular linked list.

Note this means: J is a pointer to the front of the
list.

node *convert (node *J) {

