

LINKED LIST VARIATIONS

COP 3502

Linked List Practice Problem

- Write a recursive function that deletes every other node in the linked list pointed to by the input parameter *head*. (Specifically, the 2nd 4th 6th etc. nodes are deleted)
 - From Fall 2009 Foundation Exam

void delEveryOther(node* head) {
 if (head == NULL || head->next == NULL) return;

```
node *temp = head->next;
```

```
head->next = temp->next;
```

```
free(temp);
```

delEveryOther(head->next);

Linked List Practice Problem

- Write an iterative function that deletes every other node in the linked list pointed to by the input parameter *head*. (Specifically, the 2nd 4th 6th etc. nodes are deleted)
 - From Fall 2009 Foundation Exam

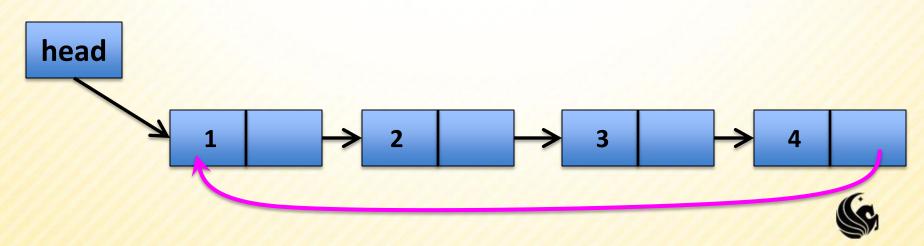
void delEveryOther(struct node *head) {
 struct node* curr = head;

while(curr != NULL && curr->next != NULL) {
 struct ll* temp = curr->next;
 curr->next = temp->next;
 curr=temp->next;
 free(temp);

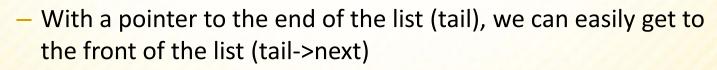
Linked List Variations

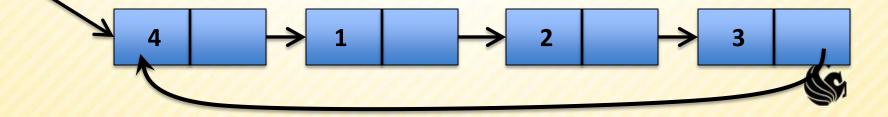
There are 3 basic types of linked lists:

- Singly-linked lists
- Doubly-Linked Lists
- Circularly-Linked Lists

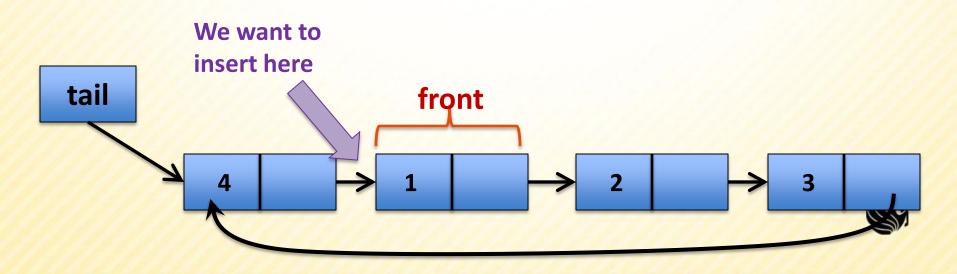

We can also have a linked lists of linked lists

Singly Linked List:

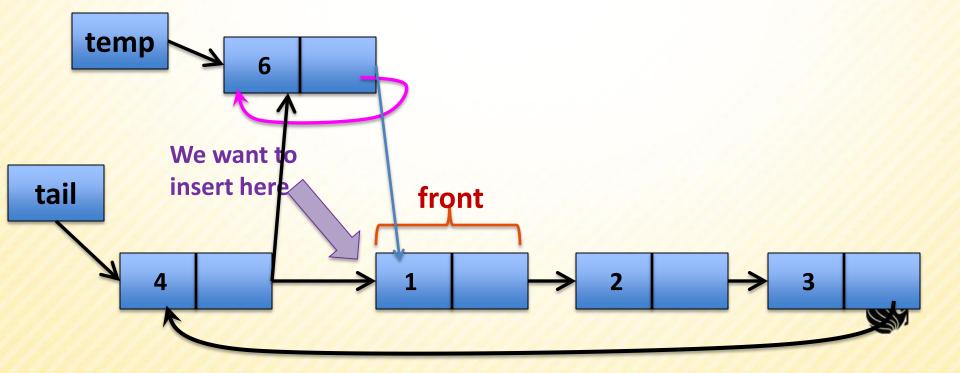

Circularly-Linked List



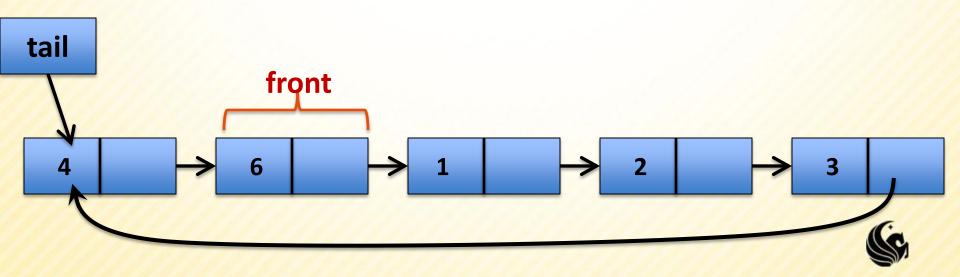
Why use a Circularly Linked List?


tail

- It may be a natural option for lists that are naturally circular, such as the corners of a polygon
- OR you may wish to have a queue, where you want easy access to the front and end of your list.
 - For this reason, most circularly linked lists are implemented as follows:



- Consider inserting to the front of a circular linked list:
 - The first node is the node next to the tail node
 - We want to insert the new node between the tail node and the first node.


Steps:

- Create a new node in memory, set its data to val
- Make the node point to itself
- if tail is empty, then return this node, it's the only one in the list
- If it's not the only node, then it's next is tail->next
- and tail->next should now point to the new node.

Steps:

- Create a new node in memory, set its data to val
- Make the node point to itself
- if tail is empty, then return this node, it's the only one in the list
- If it's not the only node, then it's next is tail->next
- and tail->next should now point to the new node.
- Resulting List:

typedef struct node {
 int data;
 node *next;
} node;

node* AddFront(node* tail, int val) {
 // Create the new node

// Set the new node's next to itself (circular!)

// If the list is empty, return new node

// Set our new node's next to the front

// Set tail's next to our new node

typedef struct node {
 int data;
 node *next;
} node;

node* AddFront(node* tail, int val) {
 // Create the new node
 node *temp = (node*)malloc(sizeof(node));
 temp->data = val;

// Set the new node's next to itself (circular!)

// If the list is empty, return new node

// Set our new node's next to the front

// Set tail's next to our new node

typedef struct node {
 int data;
 node *next;
} node;

node* AddFront(node* tail, int val) {
 // Create the new node
 node *temp = (node*)malloc(sizeof(node));
 temp->data = val;

// Set the new node's next to itself (circular!)
temp->next = temp;

// If the list is empty, return new node

// Set our new node's next to the front

// Set tail's next to our new node

```
node* AddFront(node* tail, int val) {
    // Create the new node
    node *temp = (node*)malloc(sizeof(node));
    temp->data = val;
```

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node's next to the front

// Set tail's next to our new node


```
node* AddFront(node* tail, int val) {
    // Create the new node
    node *temp = (node*)malloc(sizeof(node));
    temp->data = val;
```

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node's next to the front
temp->next = tail->next;

// Set tail's next to our new node

// Return the end of the list


```
node* AddFront(node* tail, int val) {
    // Create the new node
    node *temp = (node*)malloc(sizeof(node));
    temp->data = val;
```

// If the list is empty, return new node
if (tail == NULL) return temp;

// Set our new node's next to the front
temp->next = tail->next;

// Set tail's next to our new node
tail->next = temp;

// Return the end of the list


```
node* AddFront(node* tail, int val) {
    // Create the new node
    node *temp = (node*)malloc(sizeof(node));
    temp->data = val;
```

// If the list is empty, return new node
if (tail == NULL) return temp;

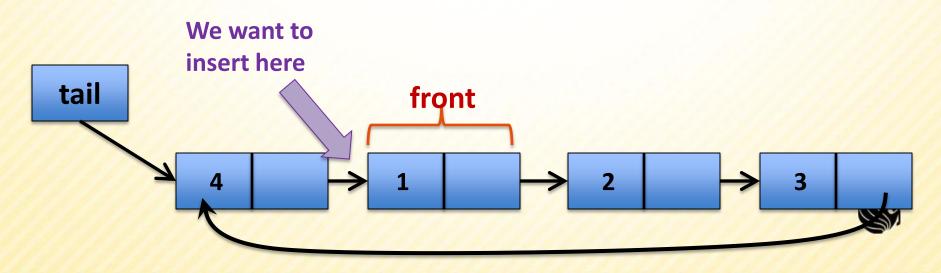
// Set our new node's next to the front
temp->next = tail->next;

// Set tail's next to our new node
tail->next = temp;

// Return the end of the list


```
node* AddFront(node* tail, int val) {
    // Create the new node
    node *temp = (node*)malloc(sizeof(node));
    temp->data = val;
```

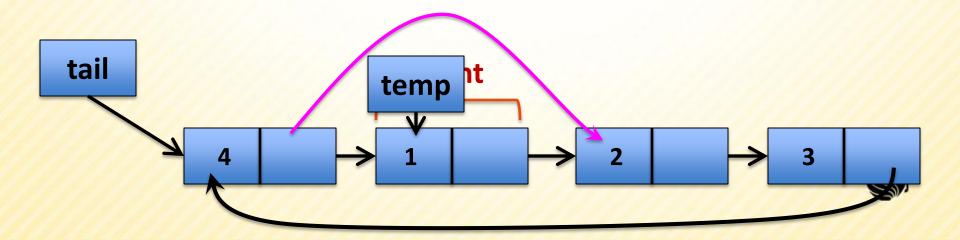
// If the list is empty, return new node
if (tail == NULL) return temp;


// Set our new node's next to the front
temp->next = tail->next;

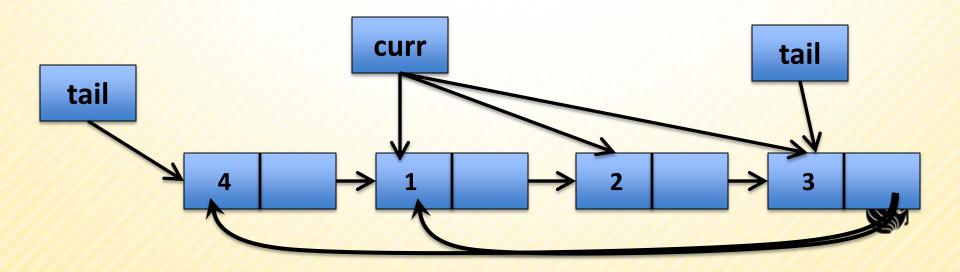
// Set tail's next to our new node
tail->next = temp;

// Return the end of the list
return tail;

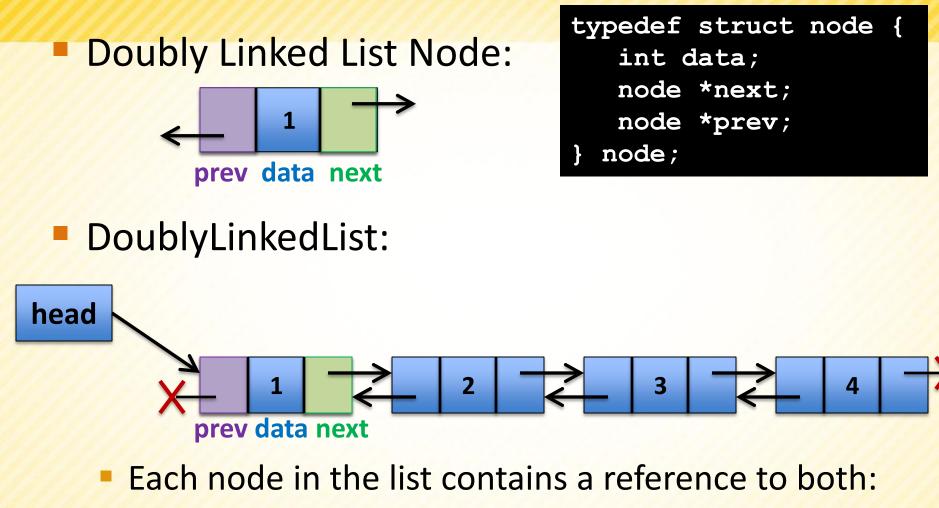
- Inserting a node at the End of a Circular Linked List
 - The new node will be placed just after the tail node
 - (which is the last node in the list)
 - So again the new node will be inserted between the tail node and the front node.
 - The only difference with AddFront, is that now we need to change where tail points after we add the node.
 - That's the only difference, so the code is pretty similar.


typedef struct node {
 int data;
 node *next;
} node;

struct node* AddEnd(struct node* tail, int val) {
 // Create the new node
 node *temp = (node*)malloc(sizeof(node));
 temp->data = val;
 // Set the new node's next to itself (circular!)
 temp->next = temp;
 // If the list is empty, return new node
 if (tail == NULL) return temp;


// Set our new node's next to the front temp->next = tail->next; // Set tail's next to our new node tail->next = temp;

// Return the new end of the list
return temp;
The only line of code
that's different


- Deleting the First Node in a Circular Linked List
 - The first node can be deleted by simply replacing the next field of tail node with the next filed of the first node:
 - >temp = tail->next; // This is the front
 - tail->next = temp->next; // This is the node after front
 - >free(temp);

- Deleting the Last Node in a Circular Linked List
 - This is a little more complicated
 - The list has to be traversed to reach the second to last node.
 - This had to become the tail node, and its next field has to point to the first node.

Doubly Linked List

the node which immediately precedes it AND

to the node which follows it in the list.

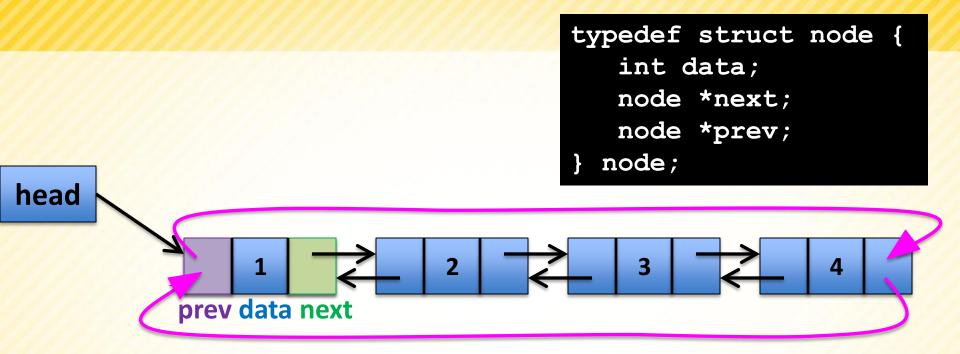
Doubly Linked List

typedef struct node { int data; node *next; node *prev; } node;

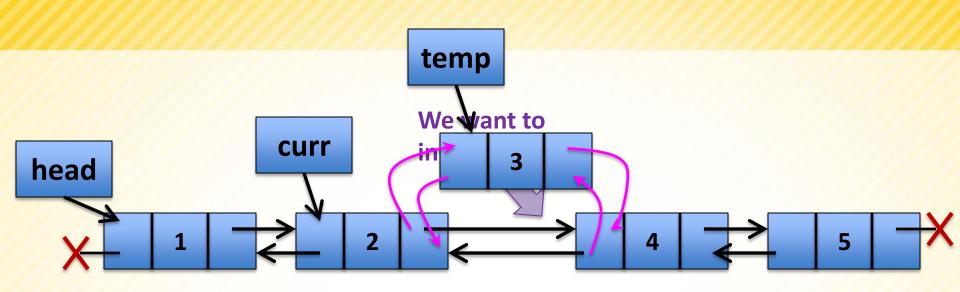
DoublyLinkedList:

Advantages:

head

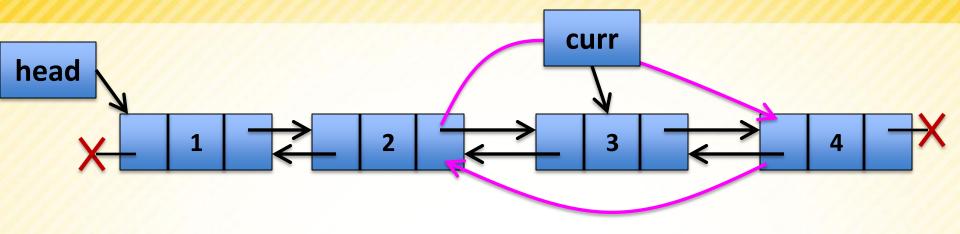

Allows searching in BOTH directions

Insertion and Deletion can be easily done with a single pointer.


Doubly Linked List

Circular Doubly Linked List

- Same as a circular doubly linked list
- BUT the nodes in the list are doubly linked, so the last node connects to the front AND the first nod connects to the last.

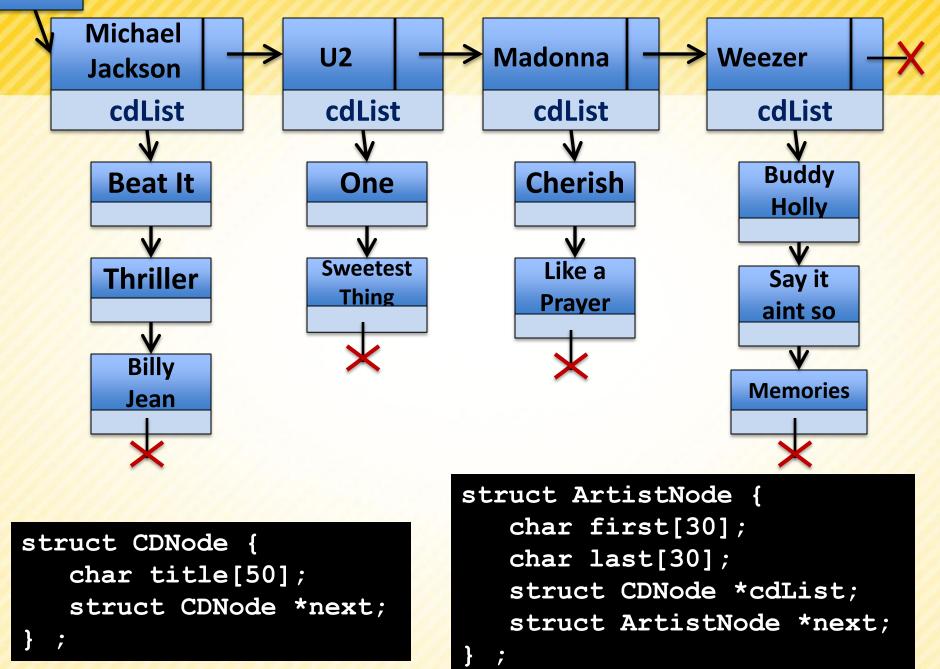

Doubly Linked List - Insertion

- Code:
 - temp->prev = curr;
 - temp->next = curr->next;
 - curr->next->prev = temp;
 - curr->next = temp;
- Disadvantage of Doubly Linked Lists:
 - extra space for extra link fields
 - maintaining the extra link during insertion and deletion

Doubly Linked List - Deletion

Code:

- curr->prev->next = curr->next;
- curr->next->prev = curr->prev;
- free(curr);
- (Assuming curr->prev and curr->next are NOT NULL)



A Linked List of Linked Lists

- Linked Lists can be part of more complicated data structures.
 - Consider the situation where we have a linked list of musical artists
 - It might also make sense that each artist has a linked list of songs (or albums) stored

head

Practice Problem

typedef struct node {
 int data;
 node *next;
} node;

- Write a function which accepts a linear linked list J and converts it to a circular linked list.
 - Note this means: J is a pointer to the front of the list.

