
Binary Trees
The traversal algorithms that appeared in the previous set of notes make exploit the fact that a binary tree can be recursively defined as:


A binary tree is:

· empty, or

· a node (the root) with two binary trees called the left subtree and the right subtree of the root.

Let’s examine the inorder traversal algorithm again:


Consider the following binary tree and produce the inorder traversal using the algorithm above.  (For practice do the preorder and postorder traversals as well.)



An inorder traversal of this binary tree produces: B A F D G C E.  Notice that the “search” for a node to print moves as deeply as possible in the left subtree before ever considering the right subtree.  This is called a depth-first traversal.  The preorder and postorder traversals are also depth-first traversals.

Now let’s perform some other operations on binary trees.  Suppose that we want to find the largest value in a binary tree.  The following algorithm will accomplish this task.



Trace of algorithm findMax 

Let’s trace the execution of algorithm findMax on the tree shown below:







1. [intial call] p == root, root_value = 40

2. left = findMax(ptr to 54)

root_value = 54

3. left == NULL, return(-1)

4. right == NULL, return(-1)

5. return 54

6. right = findMax(ptr to 13)

root_value = 13

7. left = findMax(ptr to 23)

   root_value = 23

8. left == NULL, return(-1)

9. right ==NULL, return(-1)

10. return 23

11. right = findMax(ptr to 77)

       root_value = 77

12. left == NULL, return(-1)

13. right == NULL, return(-1)

14. return 77

On return: left subtree search at 40 returns 54, right subtree pending



left subtree of 13 returns 23, right subtree of 13 returns 77



tree rooted at 13 returns 77 as the right subtree at 40



tree at 40 has left subtree 54, and right subtree 77



77 is returned as maximum value in the tree.

Now let’s suppose that we want to add the values of every node in the tree together to produce a single sum.  Before, looking at the algorithm below, try this yourself to see if you can produce a correct recursive algorithm to solve this problem.


Trace of algorithm sumTree 

Let’s trace the execution of algorithm sumTree on the tree shown below:






answer = return( 40 + add(p->left) + add(p->right))

= 40 + 54 + add(p->left) + add(p->right) + add(p->right))

= 40 + 54 + 0 + 0 + add(p->right)

= 40 + 54 + 0 + 0 + 13 + add(p->left) + add(p->right)

= 40 + 54 + 0 + 0 + 13 + 23 + 0 + 0 + add(p->right )

= 40 + 54 + 0 + 0 + 13 + 23 + 0 + 0 + 77 + add(p->left) + add(p->right)

= 40 + 54 + 0 + 0 + 13 + 23 + 0 + 0 + 77 + 0 + 0

= 94 + 36 + 77

= 207

Binary Search Trees
A binary search tree is a binary tree that is either empty or in which each node contains a data value that satisfies the following:

1. All data values in the left subtree are smaller than the data value in the root.

2. The data value in the root is smaller than all values in its right subtree.

3. The left and right subtrees are also binary search trees.

A binary search tree (often abbreviated to BST) allows for fast searching.  It amounts to embedding the binary search into the data structure.  Shown below is an example BST.


A binary search tree

Obviously, a BST is designed for quick searching and this is an extremely common operation on this data structure and it is the first algorithm that we present for it.


Insertion in a BST
Inserting a new node into a BST always occurs at a NULL pointer.  There is never a case when existing nodes need to be rearrange to accommodate the new node.  As an example, consider inserting the new value 43 into the BST shown below.  Where is the new node supposed to go?  Technique: search for 43 and you won’t find it, but the search algorithm has taken you to the NULL pointer where it should be, so this is the insertion point.








43 should







be here, so put it here!


Deletion in a BST
Deletion of nodes in a BST can be broken into three separate cases and each is handled somewhat differently.  The cases are: (1) deletion of a leaf node, (2) deletion of an internal node with a single child (either a left or right subtree), and (3) deletion of an internal node with two children (has both a left and right subtree.  We’ll examine each case separately:

Deletion of a Leaf Node
Since a leaf node has empty left and right subtrees, deleting a leaf node will render a tree with one less node but which remains a BST.  This is illustrated below:


A BST with a leaf node



The BST with the leaf node

marked for deletion



deleted. A BST remains

Deletion of a Node with One Child
When the node has one child the case is also not too complicated, but is more so than deleting a leaf node.  The parent’s reference to the node is reset to refer to the deleted node’s child.  This has the effect of lifting up the deleted node’s children by one level in the tree.  (All great-great-…-grandchildren will lose one great from their kinship designations.)  An example is shown below.


A BST with an internal node

having only one child marked

to be deleted



The marked internal node has

only a right subtree so the parent

of the deleted node will now 

reference the deleted node’s child

Note that it makes no difference if the node to be deleted has only a left or a right child.  The previous example illustrated the case when the only child was a right child.  The next example illustrates the case when the only child is a left child.



Initial BST with the node to be


deleted shown in green.  Its only


child is a left child



The BST after the deletion has occurred

Notice that essentially all that occurred to delete an internal node with a single child is the parent of the deleted node becomes the parent of what formerly were its grandchildren.

Deletion of a Node with Two Children
The last case of deletion from a BST is the most difficult to handle.  There is no one-step operation that can be performed since the parent’s right or left reference cannot refer to both node’s children at the same time.  There are basically two different approaches that can be used to handle this case: deletion via merging and deletion via copying which essentially reduce to the following scenario:

A deleted node with two children must be replaced by a value which is one of:

· The largest value in the deleted node’s left subtree.

· The smallest value in the deleted node’s right subtree.

The above technique means that we need to be able to find, either the immediate predecessor or the immediate successor node to the node which is being deleted and replace the deleted node with this value.   As an example, consider the following BST and suppose that we are deleting the value 18 from this tree.


Since the node containing 18 has two children it fits into this category for deletion.  It’s immediate predecessor is the rightmost node in its left subtree which is 13, so our first choice would be to move 13 into the node currently occupied by 18, this is shown below:


We could have, just as easily, found the immediate successor of 18 which is the leftmost node it is right subtree and put this value into the place currently occupied by 18.  This case is shown below.


Notice that in both cases, the node which is physically deleted from the BST is a leaf node, and this is the trivial deletion case.  Also notice, that while there is no fundamental difference is selecting the immediate predecessor or the immediate successor as the replacement for the deleted value, in reality there may be a difference.  The example above, illustrates, to some degree, this difference which results from a potential difference in the heights of the two subtrees.  In the example above, the immediate predecessor was the better choice since it was only one level away from the node to be deleted and therefore our search to find this node would be shorter than the search to find the immediate successor which was two levels away.  While a few levels difference in the location of the immediate predecessor and immediate successor may not make much difference, it certainly will if there is a big difference between the two heights and obviously, the shorter the height the quicker the search and this is the way to go.

Practice Problems
Shown below are three problems for you to practice writing algorithms for operations on binary trees.  As usual, try these before you look at the answers on the last page of this set of notes for a possible solution.  Since the tree has a naturally occurring recursive definition, make your functions recursive.

1. Write a function that will count the number of leaf nodes in a binary tree.

2. Write a function that will find the height of a binary tree.  The height of an empty tree is defined a zero.  The height of a single node tree is defined as 1.

3. Write a function that will interchange all the left and right subtrees in a binary tree.

Solutions to Practice Problems
Solution to Practice Problem #1


Solution to Practice Problem #2


Solution to Practice Problem #3









































4





2





3





7





6





1





5





2





3





7





6





1





5





25





72





63





32





13





67





18





59





43





25





72





63





32





13





 Data Structures: Binary Trees





67





18





59





void BSTsearch( struct treeNode *p, int target)


{   if (p != NULL)


	if (p-> data == target)   //success found target in BST


	     printf(“The tree contains %d\n”, target);


	else if (p->data < target)


		BSTsearch(p->left, target);


	else


		BSTsearch(p->right, target);


}





25





72





63





32





13





67





18





59





23





77





54





13





40





int sumTree (struct treeNode *p)


{


     if (p != NULL)


	return( p->data + add(p->left) + add(p->right));


     else


	return 0;


}	





23





77





77





77





23





13





54





40





struct treeNode {


	int data;


	struct treeNode *left;


	struct treeNode *right;


};





int findMax (struct treeNode *p)


{


	int root_value, left, right, max;





	max = -1  //assume all values in the tree are positive integers





	if (p!= NULL)


	{     root_value = p -> data;


	      left = findMax( p -> left);


	      right = findMax( p -> right );





	      //find the largest of the tree values.


	      if (left > right)


		max = left;


	      else


		max = right;


	      if (root_value > max)


		max = root_value;


	}


	return max;


}





Answers:


preorder traversal:  A B C D  F G  E





inorder traversal:  B A F D G C E





postorder traversal:  B F G D E C A





G





F





E





D





C





B





A





void inorder( struct treeNode *p)


{


	if (p != NULL)


	{	inorder(p->left);


printf(“%d\n”, p->data);


	inorder(p->right);


}


}











void interchange( struct treeNode *p)


{


     struct treeNode *temp;





     if (p != NULL){


	interchange( p->left);


	interchange( p->right);


	temp = p->left;


	p->left = p->right;


	p->right = temp;


     }


}





int height (struct treeNode *p)


{


     int leftheight, rightheight;





     if (p == NULL)


	return 0;


     else 


     {     leftheight = height(p->left);


	rightheight = height(p->right);


	if (leftheight > rightheight)


	     return(leftheight + 1);


	else


	     return(rightheight + 1);


     }


}





5





1





6





7





3





2





5





3





6





2





7





95





7





166





27





3





2





4





95





166





27





3





2





4





25





72





63





32





int number_of_leaves (struct treeNode *p)


{


     if (p!= NULL)


	if (p->left == NULL && p->right == NULL)


		return 1;


	else return (number_of_leaves(p->left) + number_of_leaves(p->right);


     else return 0;


}





67





13





59





25





72





63





32





13





67





18





59





43





43





72





63





32





13





67





25





59





43








PAGE  
2
Binary Trees - 


