
Header
For this course, each program should contain the following header information


Modularization
Separate your program into independent, self-complete modules.  We’ll discuss this in more detail later.

Consistency
Make your style as consistent as possible.  The more consistent your style, the easier it will be to read and understand your program (not just others, but yourself as well!)  Consistency will lead to fewer mistakes.  The more consistent your style, the more automatic it will become for you and you’ll spend less time thinking about program style and more about the problem at hand.
Indentation
Make the indentation of your code reflect the structure of the program.  For example,



if (count == 0) printf (“No data.\n”);

fails to match the structure of the program.  It is much better to write this as:



if (count == 0)



    printf(“No data\n”);

Here’s another bad example:



if (count != 0)



    printf(“%d\n”, count);



    average = total/count;

This last example is much more clear if it is indented as follows:



if (count != 0)



    printf(%d\n”, count);



average = total/count;

Vertical Flow
The natural flow of reading is vertically down the page.  Things that get in the way of this or detract from this flow will make a program harder to read.  We’ll see this more later in the semester as well.

Declarations
Make each variable declaration unique.  Don’t put more than one variable into a single declaration.  Also line up the names in the variable declarations, it will make finding a variable much easier.


GOOD:     int       i,



                 j,

        


      k;



       float:  a,




      b;


BAD:
      int i, j, k;



      float a, b;

Compound Statements
The braces which define the begin and end of a compound statement or a block of statements should be vertically aligned.  There are two acceptable styles and you should adopt one or the other.

Style 1:
 if ( … )        

while ( … )


     
 {


{



   …


     …


      
 }


}



 else



{



  …



}

Style 2:
if ( … )  {


while ( … )  {



 …



   …



}



}



else  {




…



}


Localize Code
The things that the proper operation of a function depend upon should, as much as possible, be together.  A worthy goal is for each function to be independently understandable, in which case the reader will not need to memorize large, separated quantities of codes to understand what is going on.  This relates to modularization and we will see more of this as the semester progresses.

Global Variables
As a general rule, global variables are not a good thing.  If you think that you need a global variable, it should be passed to the function as a parameter rather than defined as a global variable.  Note however, that constants are global, they’re just not variable!

Comments
Comments are meant to help the reader of the program understand the actions of the program.  They should add something that is not immediately evident from the code, or they should collect into one location information that is spread throughout the source.  Comments which merely reflect what is obvious from the code are not helpful, nor are comments which clearly contradict what the code is saying!  Here are some typically useless comments:



/*  return 0  */



return 0;



/* increment i by 1 */



i++;



/* initialize i to 0  */



i = 0;



/* add 7 to x */



x = 6;

An outline for your programming assignments
/***************************************************************/

*  COP 3502 – Summer 2002

*

*  Lab Section:

*  Assignment Number:

*  Date:

*  NAME:

****************************************************************/

/****************************************************************

*

*  Description of the program

*

****************************************************************/

/* List all of the header files used here.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

/* List function prototypes here.  */

void func1 (int x, int y);

int  func2( );

/*  Describe the purpose of func1  */

void func1 (int x, int y)

{


.


.


.

}

/*   Describe the purpose of func2  */

int  func2 ( )

{


.


.


.

}

int main (void)

{

/* indent the declarations and the body of the functions by      at least three spaces.  */

int x;  /* if necessary describe the variable’s purpose */

int y;  /* use short but meaningful variable names. */

/* leave a blank line before and after a loop.

/* denote the end of a loop with a comment */

return 0;

}  /* end main */





















































































































COP 3502C – Summer 2002


Lab Number:


Assignment Number:





Name:


Student ID:


Date:





COP 3502 – Summer 2002 – C Programming Style Guide








C Style Guide - 4

