[image: image3.png]=86 4105 3220

186410 5370
6 4 10 53 A
6 4 10 3 3 2 22
8 4 10 5y =2
E46 810 e

28 A5 =6-8-1022

Tracing Examples
As promised, this set of notes begins with a slightly different way of tracing code. These are the same examples as in the previous set of notes, but the tracing is maintained in a slightly different fashion.

Example 1
In the algorithms below the numbers preceding each line are for reference purposes only and are not part of the algorithm.

1 void main () {

2
int numbers [10];

3
int i, k, total;

4
//read in the numbers

5
for (i=0; i<=9; i++)

6 {

7

printf(“Enter your number:\n”);

8

scanf(“%d”, &numbers[i]);

9
}

10
//sum the numbers

11
total = 0;

12
for (k=0; k <=9; k++)

13
{

14

total = total + numbers[k];

15
}

16
printf(“The sum of your numbers is: %d .\n“, total);

17 }

The trace
Suppose the input is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Statements 1 through 4 are either comments or defining variables

Statement 5 begins a loop which ends at line 9 – which does the following:

Graphically, when the loop on line 6 terminates, the “memory” looks like:

numbers array

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20

[image: image4.png]=86 4105 3220

186410 5370
6 4 10 53 A
6 4 10 3 3 2 22
8 4 10 5y =2
E46 810 e

28 A5 =6-8-1022

total

i

 k

All of total, i, and k are undefined at this point in the algorithm

Statement 10 is a comment

Statement 11: assigns total the value of 0

Statement 12 begins a for-loop that ends at statement 15

Loop terminates.

Statement 16 prints: The sum of your numbers is: 110.

The final state of the memory looks like the following:

Numbers array

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20

total

i

 k

i is undefined

Example 2
Assume that we have an array named X which contains the values shown below. What are the values in every variable that appears in this algorithm after the loop has completed? Determine your answers by tracing the algorithm’s execution.

Array X

	index
	0
	1
	2
	3
	4
	5

	value
	4
	2
	6
	1
	5
	3

0 void main () {

1 int a = 0, b = 0;

2 int i= 0, j= 5;

3
do

4

if (X[i] < X[j]){

5

b = b + X[j];

6

j = j – 1;

7

}

8

else {

9

a = a + X[i];

10 i = i + 1;

11

}

12
while (i <= j);

13 }

a

 b

i

j

The final values in the variables are:

Array X remains unchanged

a

 b

i

j
Did you get these final values when you traced the algorithm’s execution? If you did, congratulations! you’ve successfully traced the execution of the algorithm. If you didn’t, try it again and this time be more careful! A common mistake when tracing algorithm execution is to use an array index as the value in the array rather than the value that is at that index position in the array. Perhaps this is where you made your mistake, so try it again.

Mergesort
The mergesort sorting algorithm uses the divide and conquer strategy in which the original problem is split into two half-size, recursively solved problems. If the overhead of the base case was linear [O(N)] then the overall running time of the algorithm was O(N log2 N). The mergesort is such an algorithm and is commonly employed for external sorting. The mergesort algorithm is a recursive, subquadratic algorithm as follows:

1. if the number of items to sort is 0 or 1, return.

2. recursively sort the first and second halves separately.

3. merge the two sorted halves into a single sorted group.

Since this algorithm uses the divide and conquer strategy and employs the halving principle, we know that the sorting is done in O(log2N) and thus we need only to show that merging two sorted groups into a single sorted group can be performed in linear time to prove the running time is O(N log2 N).

A linear merge algorithm
A linear merge algorithm requires three separate arrays A, B, and C (two input and one output) plus an index counter per array (actr, bctr, and cctr). The index counters are initially set to the first position in each of their arrays with incrementation as follows:

if A[actr] < B[bctr]

C[cctr] = A[actr];

cctr++;

actr++;

} else
{

C[cctr] = B[bctr];

cctr++;

bctr++;

}

Example: Linear Merge

A

B

C

actr

 bctr

cctr

Example of a mergesort.

The mergesort is not often used as an internal sorting method. The reason is that the output array represents a linear increase in the memory requirements and additional work is required to copy the components of the arrays.

Quicksort
With an average running time of O(N log2 N), quicksort is the fastest-known sorting algorithm. Quicksort has a worst case running time of O(N2) which can be made statistically impossible to achieve. Quicksort is a recursive algorithm whose performance is easy to prove yet has a tricky implementation since slight variations in the code can make significant differences in the running time.

The quicksort algorithm is as follows:

1. Call Quicksort(A).

2. if the number of elements to be sorted is 0 or 1, return.

3. pick any element v in the array A. (this is the pivot element)

4. partition A-{v} into two disjoint groups: Left = {x(A-{v}| x (v} and Right = {x(A-{v}| x (v}.

5. Return the result of Quicksort(Left), followed by v, followed by Quicksort(Right).

Notes: base case includes possibility that the number of elements is 0 since the recursive calls may generate empty subsets. Any element can theoretically be the pivot element, although in reality the pivot element is not randomly chosen. The partitioning must be performed in place so that no additional arrays are required. Quicksort outperforms mergesort because the time required to partition the array is less than the time required to merge two arrays.

Analysis
Best Case: The partitions are always ½ the size of the input (at each recursive step) – thus by the halving principle the sorting component requires O(log2 N) and with linear overhead for the base case – we have O(N log2 N) which is equal to that of the mergesort.

Worst Case: The partitions are very lopsided, meaning that either |L| = 0 or n-1 or |R| = n-1 or 0 at each recursive step.

Suppose that T(N) is the time for Quicksort on array of N elements, Left contains no elements, Right contains all of the elements except the pivot element (this means that the pivot element is always chosen to be the smallest element in the partition), 1 time unit is required to sort 0 or 1 elements, and N time units are required to partition a set containing N elements. Then if N > 1 we have:

T(N) = T(N-1) + N

This means that the time required to quicksort N elements is equal to the time required to recursively sort the N-1 elements in the Right subset plus the time required to partition the N elements.

By telescoping the equation above we have:

 T(N) = T(N-1) + N

T(N-1) = T(N-2) + (N-1)

T(N-2) = T(N-3) + (N-2)

…

 + T(2) = T(1) + 2

T(N) = T(1) + 2 + 3 + 4 + … + N = N(N+1)/2 = O(N2)

Therefore, you never want to select a pivot element that leads to an unbalanced paritioning.

Average Case: If each partition is equally likely to contain 0, 1, 2, …, N-1 elements, then the average running time of the quicksort algorithm is O(N log2 N). More formally this is stated as:

T(Left)average = T(Right)average = [T(0) + T(1) + T(2) + … + T(N-1)]/N

T(N)average = T(Left)average + T(Right)average + N

= 2[T(Left)average] + N

= 2[[T(0) + T(1) + T(2) + … + T(N-1)]/N] + N

with manipulation you arrive at:

T(N)/(N+1) = T(N-1)/N + 2/(N+1)

Telescoping yields: T(N)/(N+1) = 2[1 + ½ + 1/3 + …+1/(N+1)) – 5/2 which is O(log2 N).

Therefore, multiplying both side by N+1 gives: T(N) = O(N log2 N)

Picking the Pivot:
 Don’t do this randomly, or by picking the first element, or even by picking the larger of the first two elements. A safe way is to set low = first element and high = last element and calculating (low+high)/2. An even better way is to pick the median of three values low, middle and high.

Lower Bound on Sorting
We have seen that quicksort has a best case performance of O(N log N). The question becomes, can we do better? The bottom line is: any algorithm that sorts which uses only element (binary) comparisons will require ((N log N) time in the worst case. This means that any algorithm that sorts by using element (binary) comparisons must use at least roughly N log N comparisons for some input sequence. This is also true for the average case performance.

Consider the problem of sorting the sequence S = {a, b, c} composed of three distinct items; that is: a (b and a (c and b (c. The figure below illustrates a possible sorting algorithm in the form of a binary decision tree. Each node of the decision tree represents one binary comparison (in each node of the tree exactly two elements are compared). Since there are two possible outcomes for each comparison, each non-leaf node in the tree will be of degree two. Suppose that a < b < c in our example. Consider how the algorithm determines this fact.

Y

N

 Y

N

 Y

 N

 Y

 N

Y

 N

A Decision Tree for Comparison Sorting

For the example, the first comparison compares a and b which will reveal that a < b (since we assumed a < b < c). The second comparison compares a and c which will determine that a < c. At this point it has been determined that a < b and a < c, yet the relative order of b and c has not yet been determined. Therefore, a third comparison is required to determine the relative order of b and c. Notice that the “algorithm” works correctly in all cases because every permutation of the sequence S appears as a leaf node in the decision tree. Furthermore, the number of comparisons required in the worst case is equal to the height of the decision tree!

Any sorting algorithm that uses binary (element) comparisons can be represented by a binary decision tree. The height of that decision tree will determine the worst case running time of the algorithm. In general, the size and shape of the decision tree depends on the particular sorting algorithm and the number of elements to be sorted.

Given an input sequence of n items to be sorted, every binary decision tree that correctly sorts the input sequence must have at least n! leaves (one for each permutation of the input). Therefore, since the maximum number of leaf nodes in a binary tree of height h is 2h, that the height of the binary decision tree is at least

[image: image1.wmf]é

ù

!

n

log

2

.

Therefore,

[image: image2.wmf]é

ù

å

å

=

=

W

=

³

³

³

³

n

1

i

2

/

n

1

i

2

2

2

2

2

)

n

log

n

(

2

/

n

log

2

/

n

2

/

n

log

i

log

!

n

log

!

n

log

Since the height of the decision tree is ((n log n), the number of comparisons done by any sorting algorithm that sorts using only binary comparisons is ((n log n). Assuming that each comparison can be done in constant time, the running time of any such algorithm is ((n log n).

0 4 6 12 13

0 3 8

0 1 2 3 4

5 4 3

110

?

11

?

?

?

void Merge (int List[], int start1, int start2, int end2)

{

 int 	hold[end2-start1+1];

 int	index, length, count1, count2, total;

 length = start2 – start1;

 //copy values in the first half into a local array

 for (index = 0; index < length; index++)

	hold[index] = List[start1 + index];

 //counters keep track of the current elements in each of the two lists to merge

 count1 = 0;

 count2 = start2;

 total = start1;

 //loop until all values in one of the arrays have been merged into the sorted array.

 while (count1 < length && count2 < end2)

 {

	if (hold[count1] < List[count2]) {

		List[total] = List[count1];

		count1++;

	}

	else {

		List[total] = List[count2];

		count2++;

	}

	total++;

 }

 while (count1 < length)

 {

	List[total] = hold[count1];

	count1++;

	total++;

 }

 return;

}

void MergeSort (int List[], int start, int end)

{

 int mid;

	if (start < end) {

		mid = (start + end)/2;

		MergeSort(List, start, mid);

		MergeSort(List, mid+1, end);

		Merge(List, start, mid+1, end);

	}

}

� EMBED PBrush ���

c < b < a

b < c

c < a < b

b < a < c

a < b < c

a < c < b

b < c < a

a < b

a < c

b < c

a < c

1 3 4 7

2 5 9 11

1 2 3 4 5 7 9 11

1 3 4 7

2 5 9 11

1 2 3 4 5 7 9

1 3 4 7

2 5 9 11

1 2 3 4 5 7

 Sorting Algorithms Continued

1 3 4 7

2 5 9 11

1 2 3 4 5

1 3 4 7

1 3 4 7

1 3 4 7

2 5 9 11

1 2

1 3 4 7

2 5 9 11

1

2 5 9 11

1 3 4 7

2 5 9 11

1 2 3

2 5 9 11

1 2 3 4

8

3

4

13

PAGE
Sorting Algorithms Continued - 11

_1043679147.unknown

_1043679210.unknown

_1043669503

