
Introduction

Recursion is a important and powerful tool in problem solving and programming solutions to problems. It is a programming/algorithmic technique that naturally implements the divide-and-conquer problem solving methodology.

Some programming languages, such as Lisp, are inherently recursive languages while others, such as C, support the concept of recursion. Recursion is simply a function which invokes itself either directly or indirectly.

Recursion is an alternative to iteration although care must be taken as often recursion is not an efficient alternative to iteration. In many situations, the problem itself is expressed or defined in recursive terms and it becomes natural to develop solutions to that problem in the same recursive terms and hence a recursive program is developed.

There are a couple of different forms that recursion can assume in the context of programming algorithms and we will discuss these differences later. For now, we’ll simply look at recursion in general and how to follow the actions of a recursive function.

Recursion in its Simple Form
Consider the program shown below:

What does this program do? It simply calls the function count_down with an initial parameter value of 10. The function count_down calls itself as long as the value of n is not 0. Notice however, that it calls itself with a different value of n each time! This is an important aspect of recursion to which we must adhere or the recursion might never end and we would have an infinite loop in the code. We’ll return to this later.

Consider the following definition for the multiplication of two natural numbers:

a * b = a added to itself b times.

Notice that this is an iterative definition of multiplication. Now consider an alternative definition for multiplication:

a * b = a

if b = 1

a * b = [a * (b – 1)] + a
if b > 1

Notice that this is a recursive definition. If we have two numbers a = 3 and b = 3, then the second line of the definition applies and we have:

3 * 3 = [3 * (3 – 1)] + 3 = 3 * 2 + 3 = ?

Once again, since b in this case is greater than 1, the second line of the definition applies and we have:

3 * 2 = [3 * (2 – 1)] + 3 = 3 * 1 + 3 = ?

Finally, since b = 1 this time, we have the first line of the definition to apply and we produce our result as:

3 * 1 = 3

Since we have now produced an answer for the value of 3*1 we know that the answer for the problem 3*2 is (3*1) + 3 = 6. Since we have produced the answer for 3*2, we know that the answer for 3*3 is (3*2) + 3 = 6 + 3 = 9.

As another example of a naturally occurring recursive problem, consider the factorial function which is recursively defined as:

n! = 1

if n < 0

n! = n * (n-1)!
if n > 0

Recall that, for example, 5! = 5 * 4 * 3 * 2 * 1 = 120

The Nature of Recursion

· One or more simple cases of the problem (called either stopping cases or base cases) have a simple non-recursive solution.

· The other cases of the problem can be reduced (through recursion) to problems that are closer to base cases.

· Eventually the problem can be reduced to base cases only, which are solvable without further recursion.

General format is:

if (base case)

solve it

else

reduce the problem using recursion

Tracing a Recursive Function

The computer uses a stack (we’ll see what these are later) to keep track of function calls. Whenever a new function is called, all of its parameters and local variables are put onto this stack (called a push) along with the memory address of the calling statement. This address is necessary so that control can be passed back to this address when the called function has completed execution.

Example
x = multiply(6, 3);

Example
A palindrome is a string of characters that reads the same forwards and backwards. Example palindromes are: level, deed, mom, and dad.

Let’s construct a function that will allow us to determine if a string of characters is a palindrome or not by printing the characters in the reverse order.

Trace of palindrome if input string is abc:

palindrome(3);

Common Errors with Recursion
· It may nor terminate if the base case is not correct or is incomplete. This will result in a stack overflow which is a run-time error.

· Be very sure that each recursive step leads to a situation that is closer to a base case.

Problem Solving with Recursion

The Towers of Hanoi Problem is a classical problem in the study of recursion. It involves the problem of moving a specified number of disks (N) which are all different in size from one tower to another. The goal is to move all the disks from tower A to tower C subject to the following rules: (1) only one disk can be moved at a time and this disk must be the top disk on a tower. (2) A larger disk can never be placed on top of a smaller disk. The stopping case involves moving only one disk.

The C version of the algorithm

Answer to Practice Problem #1

Answer to Practice Problem #2

Answer to Practice Problem #3

Recursion – Chapter 4

void tower (char From, char To, char Temp, int N)

{

 if (N == 1)

	printf(“Move disk 1 from tower %c to tower %c\n”, From, To);

 else {

 	tower(From, Temp, To, N-1);

	printf(“Move disk %d from tower %c to tower %c \n”, N, From, To);

	tower(Temp, To, From, N-1);

 }

return;

}

To test this function call is as: tower(‘A’, ‘B’, ‘C’, 3)

Algorithm:

	if N =1 /* stopping case */

		move disk 1 from FromTower to ToTower

	else

move N-1 disks from FromTower to TempTower using ToTower as temporary tower.

move disk N from FromTower to ToTower

move N-1disks from TempTower to ToTower using FromTower as a temporary tower.

Problem: Solve the Towers of Hanoi Problem for N disks

Analysis: Solution will consist of a printed list of individual disk moves. We need recursion to move any number of disks from one tower to another, using a third tower as a temporary holding tower.

Input:	N: integer number of disks.

	FromTower: Either ‘A’, ‘B’, or ‘C’

	ToTower: Either ‘A’, ‘B’, or ‘C’

	TempTower: Either ‘A’, ‘B’, or ‘C’

Output: A list of individual disk moves.

int fibonacci (int n)

{

	if (n <= 1) /* terminating case */

		return n;

	else

		return (fibonacci(n-2) + fibonacci(n-1));

}

Practice Problem 3: (answer on page 8)

Write a C function that will recursively determine an Fibonacci number. The Fibonacci numbers are defined by:

			 fib(n) = n		if n <= 1

	fib(n) = fib(n-2) + fib(n-1)	if n >= 2

n = 1;

1 <= 1? TRUE

read next character: c

write c

return

n = 2;

2 <= 1? FALSE

read next character: b

palindrome (1)

write b

return

n = 3;

3 <= 1? FALSE

read next character: a

palindrome (2)

write a

return

void palindrome (int n)

{

 char next;

 if (n <= 1) /* base case */

 { scanf(“%c”, &next);

 prinf(“%c”, next);

 }

 else

 {

 scanf(“%c”, &next);

 palidrome(n-1);

 printf(“%c”, next);

 }

 return;

}/*end palindrome */

int main ()

{

 printf(“Enter a string: “);

 palindrome(5); /*assume 5 character strings */

 printf(“\n”);

}

m = 6

n = 1

1 <= 1? TRUE

return (6)

m = 6

n = 2

2 <= 1? FALSE

return (6 + multiply(6, 1)

m = 6

n = 3

3 <= 1? FALSE

return (6 + multiply(6, 2)

int factorial (int n)

{

	if (n <= 0) /* terminating case */

		return 1;

	else

		return (n * factorial (n-1));

}

Practice Problem 2: (answer on page 8)

Write a C function that will implement the factorial function in a recursive manner.

int multiply (int m, int n)

{

	if (n == 1) /* terminating case */

		return m;

	else

		return (m + multiply (m , n-1));

}

Practice Problem 1: (answer on page 8)

Write a C function that will implement this recursive definition of multiplication.

void count_down (int n)

{

	if (n) {

		printf(“%d! “, n);

		count_down(n-1);

	}

	else

		printf(“\n Blast Off!\n”);

}

int main ()

{

	count_down(10);

}

PAGE
3
Recursion -

