
Introduction

We often want computers to process large amounts of data, so we need ways to manipulate lists and other groupings of large amounts of data. To satisfy these needs, we require more than just the few basic data types that are built-into the language. The designers of the language can not possibly anticipate all the different ways in which their language will be utilized, however, they can provide the user with the means to “extend” the language to best suit their particular application.

Data abstraction is a way to encapsulate the data details of information. In creating data abstractions we build data groupings that reflect the relationships among various data and allow us to conveniently manipulate large amounts of data.

In this course we’ll study two different methods for handling two different types of data abstraction problems:

· Records: Grouping related data items together.

· Linked lists: A collection of a large amount of similar or related data.

Records
· Records are a mechanism for data grouping.

· Each record type is defined within its algorithm.

· Each record is a heterogeneous collection of data. Data of all different types (including records) are grouped into a single structure.

· A record is a composite structure composed of some number of fields. Each field has its own type.

· A data field is an individual data item within a record type.

· In the C language, records are created using the struct construct.

Examples of defining a struct in C

struct party {

int
house_number;

int
ime_starts;

int
time_ends;

};

This construct defines the type of the struct that we have named party. Before we can use the struct we need to declare variables to be of this type, just as we do with the built-in primitive types.

struct party Halloween_party;

 NewYears_party:

Once this is done, rather than a collection of six variable, we have 2 variables each containing 3 fields. Both variables are identical in structure. If we make a change to the underlying structure (i.e., the underlying type) then it changes for all variables declared to be of that type. Using our example, suppose that we add the following field to the struct:

struct party {

int
house_number;

int
ime_starts;

int
time_ends;

char
police_came: //Y or N

};

Creating New Data Types
· In the C language, the atomic (primitive) types and arrays are built-into the language and we can simply make use of any of these types.

· The atomic types can be used to create new “user-defined” data types.

· Once the new data type is defined, then we can declare variables to be of that type, just as we do with the built-in types.

· Creating variables of a new data type is a two-step process:

1. Define the new type.

2. Declare variables of that type.

· Remember! Creating the new data type does not provide any variables, only the template by which new variables can be declared.

Example
Create a student information record that includes the student’s name, id number, an array of three test scores, and array of five quiz scores, their average grade, their major, and their grade for the course.

struct student {

int
id;

char
name[20];

int
test[3];

int
quiz[5];

char
major;

char
grade;

double
average;

};

Variable declaration:

struct student s1, s2, s3; //declares three individual students

struct class[100];

//declares an array of 100 structs.

struct
*sptr;

//declares a pointer to a structure.

Accessing Records
To operators are used to access members (elements or fields) of structures.

1. The structure member operator, also called the dot operator (.).

2. The structure pointer operator, also called the arrow operator (->).

Dot operator

· s1.test[1] = 90;

· s1.average = (s1.test[0] + s1.test[1] + s1.test[2])/3.0;

· s3.grade = ‘A’;

· for (j=0; j<20; j++) printf(“%c”, s1.name[j]);

Arrow operator

· sptr = &s2;

· sptr->grade = ‘B’; //equivalent to (*sptr).grade

Recall the example involving student information when we first introduced arrays. The example code from this problem is shown below:

Before we had the capability of using arrays, the code would have looked something like this:

When we added that capability of using arrays, the code immediately improved to the following:

However, the use of records will make this code even more readable and will group related data together even better than by simply using arrays. Using records this code would look like the following:

Notice that the use of records has allowed us to group related data closely together. All of the data for a single student is now contained within a single record whereas before, it was maintained in four separate arrays.

More Examples
Patient record

struct patient {

char name[20];

int age;

int height;

int weight;

char gender;

};

struct patient p1;

· Reading into a structure:

for (int j=0; j < 20; j++)

 scanf(“%c”, &p1.name[j]);

scanf(“%d%d%d%c”, &p1.age, &p1.height, &p1.weight, &p1.gender);

Employee record

struct employee {

char firstname[20];

char lastname[20];

int age;

char gender;

double hourlySalary;

}

struct *eptr;

· Printing a field:

printf (“%d”, eptr -> age);

Records and Functions
Consider the following example in which both records and functions are used.

In the calling function that utilizes these functions we would have statements like the following:

Declaring and Using Complex Structures
There is basically no limit on how complex of a structure that you can define. This allows you to tailor make a record to match virtually any application that you would need.

Declaring records in records:

struct student {

int id;

char name[20];

struct date dob;

int test[3];

double average;

char grade;

} s1, s2;

Declaring an array of records:

struct student class[100], youngest;

Reading and printing values:

read_date(&s1.dob);

print_date(s1.dob);

Finding the youngest student in the class list:

youngest = class[0];

for (int i = 1; i < 100; i++

{ if (smaller_date(youngest.dob, class[i].dob)

youngest = class[i];

}

 Tools For Data Abstraction

struct date today;

struct date birthday1, birthday2;

read_date(&today);

print_date(today);

if (smaller_date(birthday1, birthday2)

 printf(“First person is older.\n”);

void print_date(struct date d)

{

 switch (d.month) {

	case 1: printf(“January “); break;

	case 2: printf(“Febraury “); break;

case 3: printf(“March “); break;

case 4: printf(“April “); break;

case 5: printf(“May “); break;

case 6: printf(“June “); break;

case 7: printf(“July “); break;

case 8: printf(“August “); break;

case 9: printf(“September “); break;

case 10: printf(“October “); break;

case 11: printf(“November “); break;

case 12: printf(“December “); break;

 }

 printf(“%d”, ‘ d.day);

 printf(“%d.\n”, d.year);

}

int smaller_date (struct date d1, struct date d2)

{

 if (d1.year < d2.year)

	return(1);

 else if (d1.year > d2.year)

	return (0);

 else {

	if (d1.month < d2.month)

		return(1);

	else if (d1.month > d2.month)

		return(0);

	else {

		if (d1.day < d2.day)

			return(1);

		else if (d1.day > d2.day)

			return(0);

		else return(0);

	 }

	}

}

struct date{

	int month;

	int day;

	int year;

};

void read_date (struct date *d)

{

	printf(“Enter day (int) : “);

	scanf(“%d”, &d->day);

	printf(“Enter month (int): “);

	scanf(“%d”, &d->month);

	printf(“Enter year (int): “);

	scanf(“%d”, &d->year);

}

int main ()

{

#define SIZE 20;

 struct student_record{

	int	id;

	int	quiz;

	int	exam;

	int	average;

 };

 struct student_record student[SIZE];

 for (int i = 0; i < SIZE; i++)

 {

 printf(“Enter student #%d id, quiz, and exam score\n”, i);

 scanf(“%d%d%d\n”, &student[i],id, &student[i].quiz, &student[i].exam);

 student[i].average = (student[i].quiz + student[i].exam)/200;

 printf(“Student #%d average is %d\n”, i, student[i].average);

 }

}

int main ()

{

 int student[3]; /* declare arrays to hold data. each array has 4 cells */

 int quiz[3];

 int exam[3];

 int avg[3];

 for (int i = 0; i <= 3; i++)

 {

 printf(“Enter student #%d id, quiz, and exam score\n”, i);

 scanf(“%d%d%d\n”, &student[i], &quiz[i], &exam[i]);

 avg[i] = (quiz[i]+exam[i])/200;

 printf(“Student #%d average is %d\n”, i, avg[i]);

 }

int main ()

{

 int student1, student2, student3, student4;

 int quiz1, quiz2, quiz3, quiz4;

 int exam1, exam2, exam3, exam4;

 double avg1, avg2, avg3, avg4;

 printf(“Enter student #1 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student1, &quiz1, &exam1);

 avg1 = (quiz1+exam1)/200;

 printf(“Student #1 average is %d\n”, avg1);

 printf(“Enter student #2 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student2, &quiz2, &exam2);

 avg2 = (quiz2+exam2)/200;

 printf(“Student #2 average is %d\n”, avg2);

 printf(“Enter student #3 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student3, &quiz3, &exam3);

 avg3 = (quiz3+exam3)/200;

 printf(“Student #3 average is %d\n”, avg3);

 printf(“Enter student #4 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student4, &quiz4, &exam4);

 avg4 = (quiz4+exam4)/200;

 printf(“Student #4 average is %d\n”, avg4);

}

PAGE
8
Data Abstraction (Records) -

