
Queues
· A queue is a list from which items may be deleted at one end (the front or head) of the list and into which items may be inserted at the other end (the rear or tail).

· A queue is similar to a checkout line at the grocery store – first come first served. Unlike a stack which is LIFO a queue is FIFO.
· Queues have many applications in computer systems ranging from process/job scheduling to printer spooling to packet processing in networks.
· Primitive operations defined for a queue are:
· enqueue(q, x) which inserts item x at the rear/tail of queue q.
· dequeue(q, x) which removes item x from the front/head of queue q.
· isEmpty(q) which returns true if queue q is empty and false otherwise.
· Example:

enqueue(q, ‘A’);

enqueue(q, ’B’);

enqueue(q, ‘C’);

x = dequeue(q);

enqueue(q, ‘D’);

enqueue(q, ‘E’);

x = dequeue(q);

Linked List Implementation
Just like the stack, we keep additional pointers to allow access to the structure. In the case of the queue, we need two additional pointers, one to the front and one to the read of the queue.

Binary Trees

· A binary tree is a data structure that is made up of nodes and pointers, much in the same way that a linked list is structures. The difference between them lies in how they are organized.

· A linked list represents a linear or predecessor/successor relationship between the nodes of the list. A tree represents a hierarchical or ancestral relationship between the nodes.

· In general, a node in a tree can have several successors (called children). In a binary tree this number is limited to a maximum of 2.

· The top node in the tree is called the root.

· Every node in a binary tree has 0, 1, or 2 children.

There are actually two different approaches to defining a tree structure, one is a recursive definition and the other is a non-recursive definition. The non-recursive definition basically considers a tree as a special case of a more general data structure, the graph. In this definition the tree is viewed to consist of a set of nodes which are connected in pairs by directed edges such that the resulting graph is connected (every node is connected to a least one other node – no node exists in isolation) and cycle-free. This general definition does not specify that the tree have a root and thus a rooted-tree is a further special case of the general tree such every one of the node except the one designated as the root is connected to at least one other node. In certain situations the non-recursive definition of a tree has certain advantages, however, for our purposes we will focus on the recursive definition of a tree which is:

A complete set of terminology has evolved for dealing with trees and we’ll look at some of this terminology so that we too can discuss tree structures with some degree of sophistication. As you will see the terminology of trees is derived from mathematical, genealogical, and botanical disciplines.

Rooted Tree: (from the non-recursive definition) A tree in which one node is specified to be the root, (call it node c). Every node (other than c), call it b is connected by exactly one edge to exactly one other node, call it p. Given this situation, p is b’s parent. Further, b is one of p’s children.

Degree of a node: The number of subtrees associated with a particular node is the degree of that node. For example, using our definition of a tree the node designated as the root node r has a degree of n.

Leaf Node: A node of degree 0 has no subtrees and is called leaf node. All other nodes in the tree have degree of at least one and are called internal nodes.

Child Node: Each root ri of subtree ti of tree t is called a child of r. The term grandchild is defined in a similar fashion as is the term great-grandchild.

Parent: The root node r of tree t is the parent of all the roots ri of the subtrees ti, 1<i(n. The term grandparent is defined in a similar manner.

Siblings: Two roots ri and rj of distinct subtrees ti and tj of tree t are called siblings. (These are nodes which have the same parent.)

The definitional restrictions placed on a binary tree when compared to a general tree give rise to certain properties that a binary tree will exhibit that are not exhibited by a general tree. Some of these properties and corresponding terminology are defined below.

Number of nodes in a binary tree: A binary tree t of height h, h (0, contains at least h and at most 2h-1 nodes.

Height of a binary tree: The height of a binary tree that contains n, n (0, nodes is at most n and at least (log2 (n+1)(.

Full binary tree: A binary tree of height h that contains exactly 2h-1 nodes is called a full binary tree. (Each level i in the tree contains the maximum number of nodes, i.e., every node in level i-1 has two children.)

 a full binary tree

 (height = 3, 23-1 = 7)

 (number of nodes = 7)

not a full binary tree

(height = 4, 24-1 = 15)

(number of nodes = 7)

Complete binary tree: A binary tree of height h in which every level except level 0 has the maximum number of nodes and level 0 nodes are placed from left to right on the level with no missing nodes. Note that a full binary tree is a special case of a complete binary tree in which level 0 contains the maximum number of nodes. Some complete binary trees are shown below.

How to Insert a Node
 Want to insert the left-child to the left of its parent and the right-child to the right of its parent. Common technique is to insert in order of arrival and always place element as close to the root as possible, given a choice. In other words do not arbitrarily make the tree taller.

 don’t insert here

Example Application of a Binary Tree
 Consider the expression “ (a + ((b – c) * d)

 t

Implementation

· A binary tree has a natural linked representation. A separate pointer is used to reference the root of the tree.

· Each node has a left and right subtree which is reachable with pointers

Binary Tree Traversal Algorithms

Sample Trees for Practicing Traversal Algorithms
Tree #1

Tree #2

Tree #3

Practice Binary Tree Traversal Answers

Preorder: Visit node, visit left subtree, visit right subtree

Inorder: Visit left subtree, visit node, visit right subtree

Postorder: Visit left subtree, visit right subtree, visit node

Tree #1

Preorder: 40, 30, 10, 32, 35, 70, 60, 65, 90

Inorder: 10, 30, 32, 35, 40, 60, 65, 70, 90

Postorder: 10, 35, 32, 30, 65, 60, 90, 70, 40

 Tree #2

Preorder: 40, 30, 10, 5, 15, 32, 35, 70, 60, 65, 90, 95

Inorder: 5, 10, 15, 30, 32, 35, 40, 60, 65, 70, 90, 95

Postorder: 5, 15, 10, 35, 32, 30, 65, 60, 95, 90, 70, 40

 Tree #3

Preorder: 40, 30, 10, 5, 15, 13, 12, 32, 35, 70, 60, 65, 66, 67, 68, 90, 95

Inorder: 5, 10, 12, 13, 15, 30, 32, 35, 40, 60, 65, 66, 67, 68, 70, 90, 95

Postorder: 5, 12, 13, 15, 10, 35, 32, 30, 68, 67, 66, 65, 60, 95, 90, 70, 40
40

95

15

5

65

35

90

60

32

10

70

30

40

65

35

90

60

32

10

70

30

40

+

a

*

-

d

b

c

1

1

2

2

root

A

root

Definition: A tree t is a finite, nonempty set of nodes,

 t = {r} U T1 U T2 U(U Tn

with the following properties:

A designated node of the set, r, is called the root of the tree; and

2. The remaining nodes are partitioned into n (0 subsets T1, T2, …, Tn each of which is a tree (called the subtrees of t).

For convenience, the notation t = {r, T1, T2, …, Tn} is commonly used to denote the tree t.

void isEmpty(struct queue q)

{

	return q.front == NULL

}

void dequeue(struct queue *q)

{

	char value;	

struct queueNode *tempptr;

	

	value = q->front->data;

	tempptr = q->front;

	q->front = q->fron->next;

if (q->front == NULL)

	q->rear = NULL;

	free(tempptr);

	return value;

}

void enqueue(struct queue *q, char value)

{

	struct queueNode *newptr;

	

	newptr = malloc(sizeof(struct queueNode));

	if (newptr != NULL)

	{

	 newptr->data = value;

	 newptr->next = NULL;

	 if (isEmpty(*q))

		q->front = newptr;

	 else

		q->rear->next = newptr;

	 q->rear = newptr;

	}

	else

	 printf(“%c” is not inserted. No memory available.\n”, value);

}

 Data Structures: Queues and Trees

struct queueNode{

	char data;

	struct queueNode * next;

};

struct queue{

	struct queueNode *front;

	struct queueNode *rear;

};

rear

front

D

C

B

A

E

rear

front

D

C

B

rear

front

C

B

30

70

10

32

60

90

35

65

5

15

95

13

12

66

67

68

struct treeNode {

	int data;

	struct treeNode *left;

	struct treeNode *right;

};

void preorder(struct treeNode *p)

{

	if (p != NULL)

	{	printf(“%d\n”, p->data);

	preorder(p->left);

	preorder(p->right);

}

}

void inorder(struct treeNode *p)

{

	if (p != NULL)

	{	inorder(p->left);

printf(“%d\n”, p->data);

		inorder(p->right);

}

}

void postorder(struct treeNode *p)

{

	if (p != NULL)

{	printf(“%d\n”, p->data);

postorder(p->left);

	postorder(p->right);

}

}

PAGE
1
Queues and Trees -

