COP 3502 – Lab Notes

Introduction to Order Analysis

This week’s lab introduces you to the concept of order analysis.  We will see some of this material again in the lecture but this lab will give you a first taste of the topic.  This lab should give you a good overview of what Big-Oh notation is and how it is useful when discussing the run-time complexity of algorithms.

Algorithmic Analysis

We need to have ways to compare algorithms so that we can tell if one is more efficient than another. We also want to have an idea, in advance, of how efficient (or how complex) an algorithm is before we take the time to write a program for it. We often want to know how much longer or shorter the execution time might be if we change the size of the input. 

We have two basic ways of comparing algorithms:

· The relative time they need to solve a problem. We count steps to measure this, not seconds. 

· The relative amount of space needed. We look at the amount of memory space needed to store data items. 

We have found that we often must increase one to reduce the other. We refer to this as making time/space trade-offs. 

Algorithms We Have Seen or Will See in This Class

Algorithms that take a constant number of steps, no matter how big or small the size of the data: 

· adding to a stack or queue or to the head of a list 

· finding the largest or smallest number in a sorted array 

Algorithms that need around log2n steps: 

· finding a value in a Binary Search Tree 

Algorithms that need around n steps: 

· finding a certain number in an unsorted array 

· finding the end of a linked list 

· printing the contents of an array, linked list or tree (doing a traversal) 

Algorithms that need around nlog2n steps: 

· QuickSort 

· MergeSort 

Algorithms that need around n2 steps: 

· SelectionSort 

· BubbleSort 

· 2D graphics algorithms (3D algorithms often take n3 steps) 

Algorithms that need an exponential number of steps: 

· finding the minimum distance between all nodes in a graph (traveling salesman) 

· Towers of Hanoi 

Let's look at BubbleSort 

Algorithm Sort 

// declare variables 

procedure BSort(n isoftype Num) 

// declare variables 

procedure Bubble(k isoftype Num) 

// code to do one pass of bubble on k items 
// we know that this can take up to n steps 
endprocedure 

i <- n 
loop 

// we are calling Bubble n-1 times 
exitif (i = 1) 
Bubble(i) 
i <- i - 1 

endloop 

endprocedure 

endalgorithm 

How many steps does this take?

Let tb(k) be the time to “bubble” on k items. 

We must perform the “bubble” once for each of the n-1 numbers in the array from position n down to position 2. 

So, tsort(n) ( tb(n) + tb(n-1) + ... + tb(2). 

Notice, that tb(k) is proportional to the number of compares, i.e., to k-1 compares. 

So, for some constant c, tb(k) ( c(k-1). 

Therefore, tb(n) ( c(n-1) + c(n-2) + ... + c(2) + c(1) 

    = c[(n-1) + (n-2) + ... + 2 + 1] 

    = c 
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 =  c*n(n-1)/2 

So, we have a closed form equation that tells us how many steps we will need to sort an array of size n. 

The Order of an Algorithm

Is a function of the size of a data set (where the size is n) which gives an upper bound (i.e. maximum) on the number of "steps" that the algorithm executes to solve a problem of a certain size (n). 

· The actual number of steps may be smaller or the actual number of steps may vary depending on the composition of the data set being used (we call that an instance of the data). 

· An algorithm may have different Order functions depending on the data set, i.e., it may have one Order function for the worst case data set and a different one for the best case data set. If that occurs, the worst case Order function will, by the definition of worst case, be higher than the best case Order function. 

· Once the Order function of a given algorithm is known, it can be compared to other algorithms by comparing their Order functions. 

· We can also use the Order function to estimate the increase or decrease in time required to solve a problem with a different sized data set. 

The Order function is basically the highest power of the closed-form equation that describes the number of steps needed to solve the problem. 

· We ignore any and all constants in the equation (actually we just make them equal to 1) 

· We ignore any and all lower-powered terms in the equation 

· We reduce all polynomials to the highest power in the equation and give it a coefficient of 1 (i.e., discard all lower powers) 

· Thus, Orders are either 1 or some function of n (i.e., log2n, n2, n3, 2n, n!, etc.) 

· If we have nested loops, we find the Order of the inside loop and multiply that times the Order of the outside loop 

· If we have non-overlapping loops, we take the highest powered Order function of the set of loops (i.e., the maximum Order of the non-overlapping loops). We do not multiply or add the Orders 

This number is not intended to be exact. There are too many variables, including: 

· the machine used 

· the language used (and its compiler) 

· the cleverness of the programmer 

Order Notation

We write the Order of an algorithm as a function in the form: 

· O(1) for a constant 

· O(log2n) for a function proportional to log2n 

· O(n) for a function proportional to n 

· O(nlog2n) for a function proportional to n*log2n 

· O(n2) for a function proportional to n2 

· etc. 

The Order of an algorithm is sometimes referred to as the Big O of the algorithm. 
So, the Order for BubbleSort is?

We can calculate this either by analysizing the algorithm directly (see next slide for details) or from the closed-form equation that tells how many steps it takes to execute. 

For machine X, Language Y, and programmer Z (all unknown factors), the Order function for BubbleSort can be derived from the equation: 

c*(n2-n)/2 which reduces to c*n2 and we say that is O(n2) 

If we change any of the above factors, machine, language, programmer, we can't compare this algorithm with another and expect to get an accurate estimate of the time needed (in seconds). But, if we stay with the same factors, we can estimate the change in time needed for a specific change in the size of the data set. 

Comparing Execution Times
Suppose we replace n by 2n (i.e. replace an instance of size n with one of size 2n). 




c[2n]2 = c4n2 = 4[cn2]

Thus, the time to run on an instance of size 2n = 4 * (time to run on an instance of size n). 

Notice also that it doesn't matter what the constant is, it is the value of n that changed, not the value of the constant. 

We can calculate the relative increase or decrease in time needed for different data sizes for a given algorithm, but not if we change factors such as the machine or language. We would have to run the algorithm on the original data set on the new machine to get a new base-line time to calculate from. 
Calculating the Order of an Algorithm

· Simple statements take constant time. That is, O(1). 

· A constant number of simple statements still takes a constant time: 

O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1) = O(1) 

This has a fixed number of terms, so it is still O(1) So, given some constant c that represents the number of times we do an O(1) operation, c*O(1) = O(1) 

· However, if there are n constant terms, the number of steps depends on the data size (n items) and varies as the size of the data changes, thus it is O(n) 

O(1) + O(1) + ... + O(1) + O(1) = O(n) (if there are n terms) 

So, if we do an O(1) operation n times, n*O(1) = O(n) 

· If we repeat an O(n) operation some constant number of times, the overall order is O(n) 

O(n) + O(n) + O(n) + O(n) + O(n) + O(n) + O(n) + O(n) = O(n) 

Thus, c*O(n) = O(n) 

Loops and Order Analysis

· If we have a simple (O(1)) operation inside a loop that repeats a constant number of times, we still have a constant * a constant. 

loop 

exitif (index > c) 
// some O(1) operation is executed here 

endloop 

This will be c*O(1) = O(1). 

· If the loop repeats the O(1) operation n times, its execution time will depend on the size of the data set and that makes it O(n). 

loop 

exitif (index > n) 
// some O(1) operation is executed here 

endloop 

Because the O(1) operation is repeated n times, we have n*O(1) = O(n) 

· If we have an O(n) operation inside a loop and it is repeated a constant number of times, we still have a constant * O(n). 

loop 

exitif (index > c) 
// some O(n) operation is executed here 

endloop 

This will be c*O(n) = O(n). 

· If we have a loop that repeats n times and it has an O(n) operation inside the loop, we will be executing the O(n) operation n times. 

loop 

exitif (index > n) 
// some O(n) operation is executed here 

endloop 

This will be n*O(n) = O(n2). 

· If that inner O(n) operation is a loop itself, we have nested loops: 

loop 

exitif (index1 > n) 
loop 

exitif (index2 > n) 
// some O(1) operation is executed here 

endloop 

endloop 

This causes the inner O(n) loop to be repeated n times, giving n*O(n) = O(n2). 

We can analyse any combination of nested loops this way, find the Order of the innermost loop and work outwards, multiplying the Orders as you go. 

· Only nested loops are calculated as the product of the Order of the inner and outer loops. If you have non-overlapping loops, you must find the Order of each loop and then the highest Order of those will be the overall Order of the algorithm. 

algorithm Sort 

procedure Get_Numbers // takes O(n) steps 

procedure Sort_Numbers // takes O(n2) steps 

procedure Print_Numbers // takes O(n) steps 

endalgorithm 

Since the O(n2) sort procedure will be the slowest part of this algorithm, its Order dominates the overall execution time, making this an O(n2) algorithm. 

Complexity of Computations

We have seen that we have a way to measure the complexity of an algorithm, how "good" or "bad" it is. 

Some problems can be shown not to have even bad algorithmic solutions. 

They are simply beyond the capability of any algorithmic solution.

We will talk about these "unsolvable" problems later, but we need to be aware that they exist. 
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