
Algorithms Part 1

· What is an algorithm?

· How does an everyday algorithm differ from a computer algorithm? How are they similar?

· How do you describe an algorithm?

· What makes a “good” algorithm?

· Levels of abstraction, modularization.

· Steps in the development of algorithms.

· Algorithmic components: data structures, data manipulation instructions, conditional expressions, control structures, modules.

· Binary numbers.

Algorithms Part 2
· Basic tools for building algorithms: data and operators.

· Rules for identifiers in C.

· Declaration of constants.

· Know how to declare integers, doubles, and characters as well as the standard operations used to manipulate these data types.

· The assignment statement in C. Know how it works and how to use it.

· Basic input and output in C: scanf and printf.

· Algorithmic decisions. The if and if-else statements in C.

· Relational operators: <, >=, ==, <=, <, !=

· Boolean operators: && (and), || (or), as well as ! (not). Know their truth tables.

· Be able to evaluate arithmetic and Boolean expressions using the precedence of the operators.

Algorithms Part 3
· Nested conditional statements.

· Nested if statements.

· Nested if-else statements.

· Be able to trace through code using these types of statements as well as being able to write code using them.

Control Structures
· Sequence structures. Built into the C languages, execution is by default sequential.

· Selection structures: if and if-else statements (we haven’t covered switch statements yet).

· Repetition structures: while, for, and do-while statements in C.

· Know which are top-tested loops and which are bottom-tested loops and what the difference is.

· The for loop is a counted loop, know its structure which is somewhat different that either the while or the do-while loops.

· Nested control structures, i.e., nested loops.

Functions and Modularity Part 1
· Know what modularity is and why it is a “good” thing from an algorithmic point of view.

· Hierarchy of abstraction.

· Interfaces. What are they and what do they do?

· Parameters. What is a parameter and what is it used for?

· Call by Value (also referred to as Pass by Value).

· Call by Reference (also referred to as Pass by Reference).

· Functions in C. Two types, those that return a value and void functions which do not return a value.

· Function prototype. What is it and how is it used?

· The structure of a C program.

Functions and Modularity Part 2
· More details on Pass by Value.

· More details on Pass by Reference.

· Pointers in C. How to declare them and use them.

· Operators * and &.

Functions and Modularity Part 2
· More details on Pass by Value.

· More details on Pass by Reference.

· Pointers in C. How to declare them and use them.

· Operators * and &.

Recursion
· Be able to trace the execution of a recursive function.

· Be able to write, in C, a simple recursive function.

· Be able to identify the stopping case (base case) for a recursive function.

Arrays
· Know how to define and declare arrays of 1 and 2 dimensions.

· Know how to access elements in arrays.

· Remember that C begins indexing arrays with 0 not 1. So an array declared as: int alpha [4]; contains locations alpha[0], alpha[1], alpha[2], and alpha[3].

· Passing arrays as parameters to functions.

Searching and Sorting
· This set of notes begins with some code tracing examples. Be sure you practice tracing through the execution of code.

· Introduction to Big-Oh notation.

· Know Big-Oh bounds for sequential and binary searches.

· Be familiar with how the binary search algorithm works. Given the binary search algorithm, be sure that you can identify the elements of an array that would be examined when searching for some specific value in the array.

· Know how the selection sort works.

· Know how the bubble sort works. (Algorithm)

· Know how the insertion sort works.

· Know how the mergesort works. (recursive) (Algorithm)

· Know how the quicksort works. (recursive)

Records
· Be able to correctly define a struct (record) in C.

· Be able to use and correctly access components of a struct.

Data Structures and Linked Lists
· Static versus dynamic structures.

· Self-referential structures.

· Dynamic memory allocation in C: malloc, free, and sizeof.

· The linked list data structure. Insertion and deletion techniques.

Stacks
· Know what a stack is and the access policy (LIFO – Last In First Out) which controls access to the stack.

· Know the two basic operations which are defined for a stack: push (insert) and pop (delete).

· Applications for stacks. Printing a string of characters in reverse order, converting infix expressions into postfix expressions.

Queues and Binary Trees

· Know what a queue is and the access policy (FIFO – First In First Out) which controls access to the queue.

· Know the two basic operations which are defined for a queue: enqueue (insert) and dequeue (delete). Enqueue at the rear of a queue, dequeue from the front of a queue

· Know how a binary tree is recursively defined. Consists of a (possibly empty) root node which has either 0, 1, or 2 children (successor nodes in a hierarchical relationship with the root).

· Know the recursive traversal algorithms for traversing a binary tree. Preorder: visit root, visit left subtree, visit right subtree. Inorder: visit left subtree, visit root, visit right subtree. Postorder: visit left subtree, visit right subtree, visit root.

Binary Search Trees
· Know how the structure of a binary search tree (BST) is defined. Every node in the left subtree has a value smaller than the value of the root and every node in the right subtree has a value larger than the value of the root.

· Know how to insert a new node into a BST.

· Know the three basic cases for deleting a node from a BST.

Computational Complexity
· Know how Big-Oh notation works.

· Be familiar with average and worst case performance (in terms of Big-Oh) for linear search, binary search, tree traversal algorithms, sorting algorithms, stack and queue operations, etc.

· Be able to solve Big-Oh and summation (step count) problems.

Lab Notes

· Binary numbers. Powers of 2. You should know these through at least 210.

· Binary to decimal conversions. Know how to do this.

· Decimal to binary conversions. Know how to do this.

· Logarithms. Remember the definition: log a(b) = c means that ac = b.

· Summations. Know the following:

[image: image1.wmf]å

å

å

å

=

=

=

=

+

=

=

+

=

+

=

n

1

i

n

0

i

n

1

i

n

0

i

1

n

1

n

1

2

)

1

n

(

n

i

2

)

1

n

(

n

i

· Tracing function and loop execution. (Lab #4)

· Introduction to recursive functions. (Lab #4)

· Introduction to order analysis. (Lab #5)

· Estimating algorithm running times. (Lab #6)

· Summations which begin with values other than 0 or 1. (Lab #7)

Specifics
· Part of the test will be testing your ability to write functions and incorporate them into programs.

· Part of the test will be testing your ability to trace through programs or program segments, including programs with functions that use pass by value and/or pass by reference parameters.

· Be very familiar with pointers so that you can read, write, and trace code which makes use of them.

· Material covered on the test comes from the lecture notes and the recitation lab notes. No material will appear on the test which appears only in the textbook.

· Don’t forget to put comments in any code that you write on the test. This is just as important on this code as it is on code that you actually plan to execute.

Review/Sample Questions
1. Given the following stack operations, show the contents of the stack after the last instruction has been executed.

1. push(40)

2. push(10)

3. push(10)

4. push(pop() + pop())

5. push(5)

6. push(20)

7. push(pop() / pop())

2. For the binary tree shown below, produce preorder, inorder and postorder traversals of the tree.

3. Is the binary tree from question #2 a binary search tree?

4. What is the value of
[image: image2.wmf]å

=

-

26

14

i

)

3

i

2

(

Answers To Review Questions
1. Stack problem.

1. push(40)

2. push(10)

3. push(10)

4. push(pop() + pop())

5. push(5)

6. push(20)

7. push(pop() / pop())

2. Preorder traversal:

24 36 28 19 56 57 20 30 4 18 39 74 58 7 12

Inorder traversal:

19 56 20 57 28 34 36 24 18 4 7 58 12 74 39

 Postorder traversal:

20 57 56 19 34 28 36 18 7 12 58 74 39 4 24

3. No! For instance, 36 is in left subtree of 24 (root) and 4 is in right subtree.

4.
[image: image3.wmf]å

=

-

26

14

i

)

3

i

2

(

 =
[image: image4.wmf]å

å

å

å

å

å

=

=

=

=

=

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

26

14

i

26

14

i

26

1

i

13

1

i

16

1

i

13

1

i

1

3

1

3

i

2

i

2

3

i

2

=
[image: image5.wmf]å

å

å

å

=

=

=

=

+

-

-

=

+

-

-

26

1

i

26

1

i

13

1

i

13

1

i

)

13

(

3

)

26

(

3

2

)

14

)(

13

(

2

2

)

27

)(

26

(

2

1

3

1

3

i

2

i

2

=
[image: image6.wmf]481

39

78

520

39

78

182

702

=

+

-

=

+

-

-

12

7

58

74

5

40

top

20

20

5

40

top

20

39

18

34

20

57

56

19

28

4

36

COP 3502 – Final Exam Review Notes – Summer 2002

5

40

top

20

40

top

20

10

40

top

10

24

40

top

10

top

40

PAGE
8
Final Exam Review Notes -

_1089019785.unknown

_1089020439.unknown

_1089020717.unknown

_1089020894.unknown

_1089019836.unknown

_1084783835.unknown

