

1. (10 points-total)

Given the following global array of numbers and the algorithm shown below, answer questions (a) and (b)

Array X

	index
	0
	1
	2
	3
	4
	5
	6

	value
	4
	6
	2
	1
	7
	3
	5

void function Test_2(int a, int b)

{ int i=0, j=0, k=0;

 while (a <= b)

 { if (X[a] > X[b])

 { i = X[a];

 X[a] = X[a] – X[b];

 a++;

 }

 else if (X[a] < X[b])

 { j = X[b];

X[b] = X[b] + X[a];

b--;

 }

 else { a++;

 k = X[a] + X[b];

 b--;

 }

 }

}

(a)[7 pts]

Show the array X after the loop has finished assuming is was called with Test_2(1, 6).

	index
	0
	1
	2
	3
	4
	5
	6

	value
	4
	1
	1
	1
	9
	5
	7

(b)[3 pts]

What value will the following variables contain after the loop is finished?

	variable
	i
	j
	k

	value
	2
	7
	10

2. (10 points)

Given the following array of integers, show the first five passes of the bubble sort on this array.

Array X

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	value
	41
	36
	22
	13
	17
	32
	25
	34
	28
	3
	27
	14

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	initial
	41
	36
	22
	13
	17
	32
	25
	34
	28
	3
	27
	14

	pass 1
	3
	41
	36
	22
	13
	17
	32
	25
	34
	28
	14
	27

	pass 2
	3
	13
	41
	36
	22
	14
	17
	32
	25
	34
	28
	27

	pass 3
	3
	13
	14
	41
	36
	22
	17
	25
	32
	27
	34
	28

	pass 4
	3
	13
	14
	17
	41
	36
	22
	25
	27
	32
	28
	34

	pass 5
	3
	13
	14
	17
	22
	41
	36
	25
	27
	28
	32
	34

3. (10 points)

Write a recursive function (in C) which will correctly print the first n odd integer numbers. You must define this function using only a single numeric parameter to be passed to the procedure. Assume that the initial call has the form: print_odd(n) where n indicates how many odd numbers are to be printed. For example, the call print_odd(6) would produce the following output: 1 3 5 7 9 11. Assume that n > 0.

4. (10 points)

The following program produces exactly two lines of output. Show exactly what is output by this program. Assume execution begins in the algorithm Q3.

void function alpha (int x, int * y, int z)

{ int i, j;

//x = 1, *y = 4, z = 3 from the call

i = x; // i = 1

j = z; //j = 3

x = z + i; //x = 4

 *y = x + j; //*y = 7

z = j + x; //z = 7

//x = 1 (in), y = 7 (in/out), z = 3 (in) at return

}//end alpha

void function beta (int * x, int y, int * z)

{

int i;

//*x = 7, y = 3, *z = 1 at call

*x = y; //*x = 3

y = *z; //y = 1

i = *z; //i = 1

*z = *x; //*z = 3

*x = y; //*x = 1

*z = y; //*z = 1

//*x = 1 (in/out), y = 3 (in), *z = 1 (in/out) at return

}//end beta

void main ()

{//purpose: to test parameter passing knowledge

int a=1, b=4, c=3;

alpha(a, &b, c); //a = 1, b = 7, c = 3 at return

printf(“The first output is: %d %d %d\n“, a, b, c);

 //prints 1 7 3

beta(&b, c, &a); //a = 1, b = 1, c = 3 at return

printf(“The second output is: %d %d %d \n“, a, b, c);

 //prints 1 1 3

}//main

5. (10 points)

For the recursive function below, trace the execution of the function assuming it is called via: x = unknown(5). What is the value of x that will be returned by the function?

int function unknown (int a)

{//purpose: you tell me!

if (a == 0)

return 0

else

return (unknown(a-1) + a)

}//end unknown

x = unknown(5), x = 15

 unknown(5) = unknown(4) + 5, return 15

 unknown(4) = unknown(3) + 4, return 10

 unknown(3) = unknown(2) + 3, return 6

 unknown(2) = unknown(1) + 2, return 3

 unknown(1) = unknown(0) + 1, return 1

unknown(0) = 0, return 0

For a more detailed solution to this problem, see page 8.

6. (10 points)

You have developed an algorithm which is known to be O(n2) and can solve a problem instance of size n = 40 in 4 minutes. Your boss has just given you a big problem to solve by the time the board of directors meeting begins at 3:00pm. If it is 2:30pm now and the big problem to be solved is of size n = 120, will you solve the problem in time to ask for a big raise?

[image: image1.wmf]min

)

(

)

(

)

(

)

(

)

(

)

(

36

3

4

40

4

120

t

t

120

4

40

2

2

2

2

2

=

=

=

Þ

=

Sorry! No raise today.

7. (10 points)

For the following code segment give (a) the Big-Oh run-time of the code and (b) the value of the variable x after the loop ends. (c) If n = 2 what is the final value of x?

x = 0;

for (i = 1; i <= 3*n+2; i++)

 for (j = 1; j <= 2*n-1; j++)

x = x + i;

(a)
[image: image2.wmf]å

å

å

+

=

+

=

-

=

=

-

+

=

-

-

+

=

+

-

=

-

=

2

n

3

1

i

2

2

2

2

n

3

1

i

1

n

2

1

j

)

n

(

O

2

n

n

6

)

2

n

3

n

4

n

6

(

)

2

n

3

)(

1

n

2

(

1

)

1

n

2

(

1

(b)
[image: image3.wmf]å

å

å

+

=

+

=

-

=

-

-

+

=

+

+

-

=

-

=

2

n

3

1

i

2

3

2

n

3

1

i

1

n

2

1

j

2

6

n

3

n

21

n

18

2

)

3

n

3

)(

2

n

3

(

)

1

n

2

(

i

)

1

n

2

(

i

(c)
[image: image4.wmf]108

2

216

2

12

84

144

2

6

6

)

4

(

21

)

8

(

18

2

6

n

3

n

21

n

18

2

3

=

=

-

+

=

-

-

+

=

-

-

+

8. (10 points)

For the following code segment give (a) the Big-Oh run-time of the code and (b) the value of the variable x after the loop ends.

x = 0

for (i = 1; i <= 4*(n+1); i++)

 for (j = 1; j <= 3n; j++)

x = x + 4;

(a)
[image: image5.wmf])

n

(

O

n

12

n

12

)

n

3

)(

4

n

4

(

1

2

2

4

n

4

1

i

n

3

1

j

=

+

=

+

=

å

å

+

=

=

(b)
[image: image6.wmf]å

å

å

+

=

+

=

=

+

=

+

=

=

4

n

4

1

i

2

4

n

4

1

i

n

3

1

j

n

48

n

48

)

4

n

4

(

n

12

1

)

n

3

(

4

4

9. (10 points – 5 points each)

Consider the following recursive function.

int P9 (int x, int y)

{

 if (x < 0 || y < 0)

return x(y;

 else

return (P9(x-1, y) + P9(x, y-1));

}

What do the following function calls evaluate to?

(a) P9(2,0)

5

(b) P9(1,1)

Solution to (a):

P9(2,0) = P9(1,0) + P9(2,-1)

 = P9(0,0) + P9(1,-1) + P9(2,-1)

 = P9(-1,0) + P9(0,-1) + P9(1,-1) + P9(2,-1)

 = [-1-0] + [0-(-1)] + [1-(-1)] + [2-(-1)]

 = -1 + 1 + 2 + 3

 = 5

Solution to (b):

P9(1,1) = P9(0,1) + P9(1,0)

 = P9(-1,1) + P9(0,0) + P9(1,0)

 = P9(-1,1) + P9(-1,0) + P9(0,-1) + P9(1,0)

 = P9(-1,1) + P9(-1,0) + P9(0,-1) + P9(0,0) + P9(1,-1)

 = P9(-1,1) + P9(-1,0) + P9(0,-1) + P9(-1,0) + P9(0,-1) + P9(1,-1)

 = [-1-1] + [-1-0] + [0-(-1)] + [-1-0] + [0-(-1)] + [1-(-1)]

 = -2 + (-1) + 1 + (-1) + 1 + 2

 = 0

10. (10 points – 5 points each)

Consider the merge-sort algorithm that we discussed in class:

void Mergesort(int list[], int start, int end)

{ int mid;

 if (start < end)

 { mid = (start + end) /2;

 Mergesort (list, start, mid);

Mergesort (list, mid+1, end);

Merge(list, start, mid+1, end);

 }

}

The following array is to be sorted using this algorithm.

	30
	21
	40
	15
	13
	8
	4
	6

(a) How many recursive calls to the Mergesort function will be made to sort this array? (Do not count the original call from main.)

Answer:

(b) How many calls to the Merge function are made in total?

Answer:

Complete solution to problem #5:
	main: x (unknown(5)

	(1) unknown: a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(3)

	(2) unknown: a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(3) unknown: a=3, returns: (unknown(2)+3)

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(4) unknown: a=2, returns: (unknown(1)+2)

	(3) unknown: [pending] a=3, returns: (unknown(2)+3)

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(5) unknown: a=1, returns: (unknown(0)+1)

	(4) unknown: [pending] a=2, returns: (unknown(1)+2)

	(3) unknown: [pending] a=3, returns: (unknown(2)+3)

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(6) unknown: a=0, returns 0

	(5) unknown: [pending] a=1, returns: (unknown(0)+1)

	(4) unknown: [pending] a=2, returns: (unknown(1)+2)

	(3) unknown: [pending] a=3, returns: (unknown(2)+3)

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(5) unknown: a=1, returns: 1

	(4) unknown: [pending] a=2, returns: (unknown(1)+2)

	(3) unknown: [pending] a=3, returns: (unknown(2)+3)

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(4) unknown: a=2, returns: 3

	(3) unknown: [pending] a=3, returns: (unknown(2)+3)

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(3) unknown: a=3, returns: 6

	(2) unknown: [pending] a=4, returns: (unknown(3)+4)

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(2) unknown: a=4, returns: 10

	(1) unknown: [pending] a = 5, returns: (unknown(4)+5)

	main: [pending] x = unknown(5)

	(1) unknown: a = 5, returns: 15

	main: [pending] x = unknown(5)

	main: x = 15

COP 3502 – Exam #2 – Summer 2002

NAME:

July 8, 2001 (100 points)

Array X

The first output is: 1 7 3

The second output is: 1 1 3

KEY

0

5

7

14

void function print_odd (int n)

{ //print the first n odd integers recursively.

 // Assume n > 0.

 if (n ==1)

 printf(“1 \n”);

 else {

 print_odd(n-1);

 printf(“%d “, (2*n)-1);

 }

}//end function print_odd

PAGE
2

_1087634653.unknown

_1087636160.unknown

_1087636251.unknown

_1087636336.unknown

_1087635863.unknown

_1087392490.unknown

