
Introduction

All programs are written in terms of three different types of control structures. Recall that control structures allow you to act upon the decisions that are made by the algorithm. The three basic control structures are:

1. Sequence structures

· Statements are executed one after the other in the order they were written.

· This is built into the C language. C programs are executed sequentially by default.

2. Selection structures

· C has three types: if, if-else, and switch.

3. Repetition structures

· Again, C has three types: while, for, and do-while.

We will examine all of the various types of control structures.

Repetition Structures
· Repetition structure: The loop is an iteration construct that provides a way of controlling the repetition. The programmer specifies some action which is to be repeated as long as some specified condition remains true.

· A loop may appear anywhere within the body of an algorithm.

· We’ll look at while loops first since it is a basic loop construct and the other loop constructs can be expressed in terms of a while loop.

While Loop Repetition Structure
· A while loop is repeated until the looping condition becomes false. For example, while there are more items on my grocery list – purchase next item and cross it off the list.
· The general format of the while loop is:

while (boolean expression)

statement;
where statement is any valid statement in C (including an empty statement or a block. It is called the body of the loop.

· Typically, the body of the loop will consist of more than a single statement and therefore, most while loops will look like the following:

while (<boolean expression>) {

 statement 1;

 statement 2;

 . . .

 statement n;

}

statement A;

1) Evaluate the boolean expression

2) If its true, execute statement 1 through statement n in order.

3) If its false, skip to statement A and continue execution.

4) After statement n is executed, one iteration is completed. Execution goes back to step 1 and everything is repeated.

Graphical representation of while-loop control structure

Examples
(1)
product = 1;

while (product <= 100)

product = 2 * product;

(2) x = 1;

while (x < 10) {

 printf (“%d \n”, x);

 x = x + 1;

}

printf (“%d\n”, x);

(3) /* illustration of an infinite loop!!!! */

x = 1;

while (x != 10) {

 printf (“%d \n”, x);

 x = x + 2;

}

(4) /* illustration of short circuit evaluation */

/* assume x = 7 and y = 5 at this point */

while ((x > 0) && (y > 0)) {

 printf (“%d \n”, x * y);

 x = x – 2;

 y = y – 3;

}

Example Algorithms Using While Loops

In Class Exercise

Problem specification: We want to compute the sum of the odd numbers between 1 and 100.

Problem analysis: How do we determine what the odd numbers between 1 and 100 are? Starting with 1 add 2 every time and you’ll generate the sequence 1, 3, 5, 7, 9, …, 99; which is the odd numbers between 1 and 100. Now for every odd number that we generate we need to keep a running sum of the total of all the odd numbers generated thus far and stop when we generate number 99. Finally, print out the sum that we have calculated.

Graphical algorithm:

C program implementation of the algorithm

The next phase is testing and verification. For practice you can try this one yourself.

Shown below is an alternative approach to the solution of this problem.

More Practice Problems
Here are some more problems you can practice on:

(Practice Problem 1)

Develop an algorithm and implement it as a C program that will print out a tipping chart for meals whose cost range from $1.00 to $100.00 in one dollar increments assuming that you tip at a 20% rate. For each meal in the specified range print the amount of the tip you would pay.

(Practice Problem 2)

Modify the algorithm from Practice Problem 1 so that instead of printing a table of tip amounts it prompts the user for the amount of the meal and the percentage that the user would like to tip. Based upon this input the algorithm calculates and prints for the user the amount of tip that should be paid.

(Practice Problem 3)

Modify the algorithm from Practice Problem 1 so that instead of printing out a table of tip amounts it prompts the user for the amount of the meal and the type of service that was provided with E = excellent (best tip; 25%), G = good (good tip; 20%), A = average (average tip; 15%), and P = poor (poor tip; 5%). The algorithm then calculates the amount of tip that you will pay.

(Practice Problem 4)

Develop an algorithm that will print the sum of all the integers between two user input values start and end. Assume that end >= start and the sum will fit into a standard integer variable.

(Practice Problem 5)

Develop an algorithm that will generate the first n powers of 2 where n is input by the user of the algorithm. For example, if the user inputs a value of n as 7, the algorithm will produce the values: 1, 2, 4, 8, 16, 32, 64, 128.

Menu Driven Programs
Often it is desirable to present the user with options to control the execution of an algorithm. What options are available, how many are available, etc., will be dependent upon the problem which the algorithm solves. However, all menu driven algorithms (programs) will follow a format similar to that shown below:

For Loop Repetition Structure
General format of a for statement:

for (initialization; loop continuation test; increment statement)

<statement>
Example:

for (counter = 1; counter <= 10; counter++)

printf (“%d\n”, counter);

As with while loops, there is typically more than one statement in the body of a for loop. Therefore the format of the for statement more typically looks like the following:

for (initialization; loop continuation test; increment statement) {

<statement 1>;

<statement 2>;

. . .

<statement n>;

}

<statement A>

Execution proceeds as follows for a for loop:

1) Execute the initialization. (It is a statement by the way.)

2) Evaluate the loop continuation test (a Boolean expression).

3) If its true:

1. execute statements 1 through n.

2. execute the increment statement.

3. go back to step 2.

4) If its false, skip the loop body and continue with statement A.

NOTE: It is possible that the for loop will execute none of its statements. This will happen when the initial test on the loop continuation test fails.

For loops can normally be rewritten as while loops. If so, the while loop will assume the following form:

initialization;

while (loop continuation test) {

 <statement 1>

 <statement 2>

 …

 <statement n>

 increment control variable;

}

Examples
(1)
This for loop:

for (counter = 1; counter <= 10; counter++)

printf (“%d\n”, counter);

Can be written as the following while loop:

counter = 1;

while (counter <= 10) {

 printf (“%d\n”, counter);

 counter = counter + 1;

}

(2) The earlier example of summing the odd numbers from 1 to 100 redone using a for loop.

Do-While Repetition Structure

The do/while repetition structure is:

· Similar to the while repetition structure.

· The condition for repetition is tested after the body of the loop is performed.

· All statements in the loop body are executed at least one time.

Format:

do {

statement(s);

} while (condition) ;

Example:

counter = 1;

do {

 printf (“%d\n”, counter);

 counter = counter + 1;

} while (counter <= 10);

Example

Nested Control Structures
Flow of control statements such as if, for, while, etc. can be nested within themselves and within one another.

When the body of a loop includes another loop construct, the inner loop is called a nested loop. In a nested loop structure the inner loop is executed from its beginning to end every time the body of the outer loop is executed.

Examples
(1)

value = 0;

for (i = 1; i <= 10; i++)

 for (j = 1; j <= 5; j++) {

 value = value + 1;

}

printf (“Value is: %d\n”, value);

For this example, the body of the outer loop executes a total of 10 times. For each iteration of the outer loop the inner loop executes a total of 5 times.

Trace:

i = 1; j = 1, 2, 3, 4, 5; value = 1, 2, 3, 4, 5

i = 2; j = 1, 2, 3, 4, 5; value = 6, 7, 8, 9, 10

i = 3; j = 1, 2, 3, 4, 5; value = 11, 12, 13, 14, 15

i = 4; j = 1, 2, 3, 4, 5; value = 16, 17, 18, 19, 20

i = 5; j = 1, 2, 3, 4, 5; value = 21, 22, 23, 24, 25

i = 6; j = 1, 2, 3, 4, 5; value = 26, 27, 28, 29, 30

i = 7; j = 1, 2, 3, 4, 5; value = 31, 32, 33, 34, 35

i = 8; j = 1, 2, 3, 4, 5; value = 36, 37, 38, 39, 40

i = 9; j = 1, 2, 3, 4, 5; value = 41, 42, 43, 44, 45

i = 10; j = 1, 2, 3, 4, 5; value = 46, 47, 48, 49,50

final value printed is 50.

(2)

value = 0;

for (i =1 ; i <= 10; i++)

 for (j = 1; j <= i; j++) {

value = value + 1;

 }

printf (“Value is: %d\n”,value);

For this example, the body of the outer loop executes a total of 10 times. For each iteration of the outer loop the inner loop executes a total of i times.

Trace:

i = 1; j = 1; value = 1

i = 2; j = 1, 2; value = 2, 3

i = 3; j = 1, 2, 3; value = 4, 5, 6

i = 4; j = 1, 2, 3, 4; value = 7, 8, 9, 10

i = 5; j = 1, 2, 3, 4, 5; value = 11, 12, 13, 14, 15

i = 6; j = 1, 2, 3, 4, 5, 6; value = 16, 17, 18, 19, 20, 21

i = 7; j = 1, 2, 3, 4, 5, 6, 7; value = 22, 23, 24, 25, 26, 27, 28

i = 8; j = 1, 2, 3, 4, 5, 6, 7, 8; value = 29, 30, 31, …, 36

i = 9; j = 1, 2, 3, 4, 5, 6, 7, 8, 9; value = 37, 38, …, 45

i = 10; j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; value = 46, 47, …, 55

final value printed is 55.

(3)

Write an algorithm to draw a triangle like the one shown below, where the size of the triangle is input by the user.

*

**

This can be accomplished using a nested for-loop.

for (i = 1; i <= size; ++i) {

 for (j = 1; j <= i; ++j)

printf (‘*”);

 printf (“\n”);

}

(4)

Write an algorithm to enforce the user to enter an acceptable answer of Yes or No.

do {

printf (“Do you want to continue? (Y/N)”);

scanf (“%c”, &answer);

} while (answer = ‘Y’ && answer = ‘y’);

Common Errors when Programming Loop Control Structures
· Creating an infinite loop. Whatever condition controls the execution of the loop, it must in some fashion be able to change during the execution of the loop. The following illustrates an infinite loop.

// an infinite loop!

counter = 1;

do {

sum = sum + 1;

printf (“The sum is: %d\n”, sum);

} while (counter <= 100);

· Putting a semicolon right at the end of the loop structure. In this case the body of the loop contains no statements and thus it appears not to execute. For example:

for (i = 0; i < 10; i++);

 or

counter = 10;

for (i = 1, i < counter; i++);

 printf (“The value of i is: %d\n”, i);

· Forgetting to put braces around the body of the loop if more than one statement is contained in the body. For example:

for (i = 1; i <= size; ++i)

 for (j = 1; j <= i; ++j)

 printf (‘*”);

printf (“\n”);

Although you might think that this will print the triangle like the earlier example, what it really does is print a single line of *s.

· Creating an incorrect Boolean expression to control the loop structure. For example assume the user will enter a ‘Y’ or ‘y’ to continue looping:

do {

printf (“Do you want to continue? (Y/N)”);

scanf (“%c”, &answer);

} while (answer != ‘Y’ && answer != ‘y’);

· Off by one errors. In this case the loop runs one too many or one too few times. For example, if we want to print the first 10 integers the following only prints the first 9.

for (i = 1; i < 10; i++)

printf (“%d\n”, i);

In Class Exercise
Problem specification: We want to develop an algorithm/program that will allow us to play the game of craps.

Problem analysis: Need to know how to play craps.

· A player rolls (throws) two dice.

· If the sum of the two dice is 7 or 11 on the first throw, the player wins.

· If the sum of the two dice is 2, 3, or 12 on the first throw, the player loses.

· If the sum of the two dice is 4, 5, 6, 8, 9, or 10 on the first throw, then that sum becomes the player’s point. To win, the player must continue rolling the dice until they make their point. The player loses by rolling a 7 before making the point.

Examples of playing the game:

(1) Player rolls 6 + 5 = 11

Player wins!

(2) Player rolls 6 + 6 = 12

Player loses.

(3) Player rolls 4 + 6 = 10

Point is 10

Player rolls 2 + 4 = 6

Player rolls 3 + 3 = 6

Player rolls 4 + 6 = 10

Player wins!

(4) Player rolls 1 + 3 = 4

Point is 4

Player rolls 1 + 4 = 5

Player rolls 5 + 4 = 9

Player rolls 4 + 6 = 10

Player rolls 6 + 3 = 9

Player rolls 5 + 2 = 7

Player loses

English algorithm:

(1) Roll two dice and get their sum.

(2) Check the sum and determine the status of the game

· Game status = 1; player wins

· Game status = 2; player loses

· Game status = 0; game in progress, player tries to make the point.

(3) If game status is 0, continue rolling dice until game status is 1 or 2.

(4) Print the results of the game.

Graphical algorithm:

Problems that still need to be addressed at implementation time:

At this point we have defined our algorithm, but certain issues may still be pending. For example, how do we simulate the rolling of the dice. These issues are independent of our algorithm and depend only upon the implementation.

C implementation of our algorithm:

/*****************************The Game of Craps Continues ******************************/

/* function to control/simulate rolling the die */

int roll_dice (void)

{

	int 	die1,

		die2,

		sum;

	die1 = 1 + (rand() % 6); /*generate random number between 1 and 6 */

	die2 = 1 + (rand() % 6);

	sum = die1 + die 2;

	printf (“Player rolled %d + %d = %d\n”, die1, die2, sum);

	

	return sum;

} /*end function roll_dice */

/***********************************The Game of Craps *************************************/

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int roll_dice (void);		/* function prototype */

int main (void)

{

	int 	game_status, sum, 	point; /* note bad style here!!!*/

	srand(time(NULL));		/*seed the random number generator */

	sum = roll_dice();		/* make first roll of the dice */

	if (sum == 7 || sum == 11)

		game_status = 1;	/*Player wins on first roll */

	else if (sum == 2 || sum == 3 || sum == 12)

		game_status = 2; /*Player loses on first roll */

	else {

		game_status = 0;

		point = sum;

		printf (“The point is%d\n”, point);

	}

	while (game_status == 0) { /*keep rolling the dice */

		sum = roll_dice ();

		if (sum == point)	/*win by equaling the point */

			game_status = 1;

		else if (sum == 7) 	/* lose by rolling a 7 */

			game_status = 2;

	} /*end while */

	if (game_status == 1)

		printf (“Player wins \n”);

	else

		printf (“Player loses \n”);

	return 0;

} /* end main */

/* Continued on next page */

false

false

true

sum = 7 ?

true

sum = point

?

roll two dice

and

determine their sum

point = sum

true

false

Player LOSES

game status = 2

Player WINS

game status = 1

sum = 2,3, or 12 ?

false

true

sum = 7 or 11

?

roll two dice

and

determine their sum

begin

/* Program to calculate the sum of the odd integers between 1 and 100. */

#include <stdio.h>

int main () {

 int number = 1;

 int sum = 0;

 number = 1;

 do {

 sum += number; /* add to sum */

 number = number + 2; /* generate next odd number */

 } while (number < 100);

 printf (“1 + 3 + 5 + … + 99 = %d\n”, sum);

 return 0;

} /* end main */

/* Program to calculate the sum of the odd integers between 1 and 100. */

#include <stdio.h>

int main () {

 int number = 1;

 int sum = 0;

 for (number = 1; number < 100; number = number + 2) {

 sum += number; /* add to sum */

 }

 printf (“1 + 3 + 5 + … + 99 = %d\n”, sum);

 return 0;

} /* end main */

/*************** Template for Menu Driven Programs ******************/

int main () {

 int choice; /* input variable which stores users selection/choice */

 //print out the menu

 scanf (“%d”, &choice);

 while (choice != <quitting choice>) {

 	if (choice == 1) {

	 //execute this option

	}

	else if (choice == 2) {

	 //execute this option

	}

	. . .

	else {

	 //handle invalid menu selection input

	}

	//print out the menu again

 scanf (“%d”, &choice);

 } /* end while */

 return 0;

} /* end main */

/* Program to calculate the sum of the odd integers between 1 and 100. */

#include <stdio.h>

int main () {

 int number = 1;

 int sum = 0;

 while (number < 100) {

	if (number%2 == 1) /*odd numbers are not divisible by 2 */

 sum += number; /* add to sum */

 ++number; /* increment number */

 }

 printf (“1 + 3 + 5 + … + 99 = %d\n”, sum);

 return 0;

} /* end main */

/* Program to calculate the sum of the odd integers between 1 and 100. */

#include <stdio.h>

int main () {

 int number = 1;

 int sum = 0;

 while (number < 100) {

 sum += number; /* add to sum */

 number = number + 2; /* generate next odd number */

 }

 printf (“1 + 3 + 5 + … + 99 = %d\n”, sum);

 return 0;

} /* end main */

begin

stop

print the sum

false

number = number + 2

sum = sum + number

true

Is number < 100

sum = 0

number = 1

/* Determine the amount of money everyone in class has with them */

#include <stdio.h>

int main () {

 double individual_amt; /* amount on one student */

 total = 0;	 /* total amount on the class */

 char response;	 /* a student’s response */

 printf (“Does any one have any money on them? Enter y or Y\n”);

 scanf (“%c”, &response);

 while ((response == ‘y’) || (response == ‘Y’)) {

 printf (“Enter the amount you have on you at the moment.\n”);

 scanf (“%lf”, &individual_amt);

 total += individual_amt; /* add current donation to total */

 printf (“Does anyone else have any money? Enter y or Y\n”);

 scanf (“%c”, &response);

 }

 printf (“The class has a total of $%lf dollars.\n”, total);

 return 0;

}

statement(s)

true

false

condition

Control Structures – Chapter 3 and Chapter 5

PAGE
4
Control Structures -

