
Introduction

An array is a sequence of data items that are each of the same type. Each item in the array is indexed, meaning that its location within the sequence of data is known. The sequence of items is stored in the computer’s memory in a contiguous fashion. Typically arrays are used to represent a large number of homogeneous data values. An individual element (item) within an array is accessed through its index value which is commonly called its subscript. Arrays of all types are possible, including arrays of arrays.

Arrays
Consider the program shown below:

What is wrong with this code? Several things actually. We needed to declare a set of variables for each student in the course to store their id, quiz, and exam score plus a variable to record their average score. Notice that the data we need to store is very homogeneous, i.e., it looks the same for every student. Not the actual values of course, but the type of data that is maintained is the same. This is a situation where an array will be very beneficial in reducing the amount of code that we need to write as well as making the program more readable. What would happen in the program above it there were 200 students in the course! Even though we have not yet covered the techniques for declaring and using arrays, look at the code below, which accomplishes the same task as the code above, and you will easily understand how much more readable and compact the code has become.

Declaration of Arrays in C
· General format: type identifier [size of the array];

· A typical array declaration allocates memory starting from a base address. The array name, is in effect, a pointer constant to this base address.

· To store the elements of the array the compiler assigns an appropriate amount of memory, starting from the base address.

· Examples: int x[10]; double alpha[50];
 char word[10];

· The identifier is a constant which points to the base address of the array.

· The elements of the array are accessed by using the identifier and the index of the position of the element within the array.

· In C all arrays begin with an index value of 0. Therefore an array such as x declared above consists of the following locations (cells) in the array: x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], and x[9].

Initializing an Array in C
· int y[5] = {1, 3, 5, 7, 9};

· double x[10] = {1.1, 2.2, 3.3}; //remainder are all zero

· int m[] = {2, 4, 6, 8, 10}; //equivalent to: int m[5] = {2, 4, 6, 8,10};

Accessing Elements of an Array in C
· Given an array declaration such as int alpha[40]; The array can be accessed as a whole or through any individual element. To access any element of the array, use the index (subscript) notation such as alpha[0] which refers to the first location (cell) in this array. Any valid expression can appear in the place of the index variable as long as it evaluates to a value which is in the range from 0..size-1, where size is the upper limit on the declared size of the array.

Example

Common Mistakes Using Arrays
· Out of Bounds error: This happens when you index into an array with an invalid index. For example if you declare the following: int a[5]; and then attempt to access a[5] or a[-1] you will be out of the bounds of the array and will see this error message.

· Forgetting to initialize all of the elements of the array.

· Attempting to assign a value to an entire array such as a = 10; This is not syntactically correct since the left-hand side is not an integer variable, while the right-hand side is an integer expression.

· Not differentiating between an array index and the value stored in an array at a particular index.

The actual manipulation of array elements and indices can get quite tricky, so you need to be careful. Consider the following example:

Before you look at the solution that actually works, shown on the next page, think about the one above and see if you can understand why it doesn’t work. What is it doing that causes a problem.

Passing Arrays as Parameters to Functions
· In a function definition, a formal parameter that is declared as an array is actually a pointer.

· When an array is passed, its base address is passed as call-by-value. The array elements themselves are not copied.

Example

Searching for a Value in an Array
· This is a very common programming process.

· Sequential Search: This is the simplest method. The search begins at one end of the array and scans toward the opposite end, looking at every element in the array along the way until either the desired element is found or the other end is reached and the element was obviously not found.

Sorted Arrays
· What happens to our searching algorithm from above if the array that we are searching is sorted? As soon as we encounter an element whose value is larger than the value we are searching for, we can stop because we know that the value will not be contained in the array. Therefore, we can streamline our algorithm for the find function to the following version:

Arrays – Chapter 5

int find (int big_array[], int size, int value)

{

 int 	found = 0;

	loc = 0;

 while (!found && loc < size)

 {

 	if (big_array[loc] >= value)

	{ found = 1;

	 return loc;

	}

	else

	 loc = loc + 1;

 }

	if (found && big_array[loc] != value)

	 found = 0;

	return found;

}

//Sequential searching in an array

int find (int big_array[], int size, int value);

int main ()

{

 int 	num[10], found;

 for (int i = 0; i< 10l i++)

 {

 	printf(“Enter the next number.\n”);

	scanf(“%d”, &num[i]);

 }

 found = find(num, 10, 3);

 if (found != -1)

	printf(“You entered the value 3 at location %d.\n”, found);

 else

	printf(“You did not enter the value 3.\n”);

 return 0;

}

int find (int big_array[], int size, int value)

{

 int 	found = 0;

	loc = 0;

 while (!found && loc < size)

 {

 	if (big_array[loc] == value)

	 found = 1;

	else

	 loc = loc + 1;

 }

	if (found)

	 return loc;

	else

	 return –1;

}

//The function

int sum (int a[], int n)

{

 int	j, s = 0;

 for (j = 0; j < n; j++)

	s = s+ a[j];

 return s;

}

Calling the function (assume we have: int total, x[100]).

total = sum(x, 100);

total = sum(x, 80);

total = sum(&x[5], 50);

//Problem: You are given an array named numbers, indexed from //0 to 99. You are to reverse the contents of the array.

int index, temp, numbers[100];

for (index = 0; index < 99/2; index++)

{

 temp = numbers[index];

 numbers[index] = numbers[99-index];

 numbers[99-index] = temp;

}

//Problem: You are given an array named numbers, indexed from //0 to 99. You are to reverse the contents of the array. The

//following solution DOES NOT WORK! WHY?

int index, temp, numbers[100];

for (index = 0; index < 99; index++)

{

 temp = numbers[index];

 numbers[index] = numbers[99-index];

 numbers[99-index] = temp;

}

//Program reads in five test scores and prints them in the reverse order.

int main ()

{

 int index, test_scores[5];

 //read in the scores to the array

 printf(“Enter 5 test scores.\n”);

 for (index=0; index < 5; index++)

	scanf(“%d”, &test_scores[index]);

 //print the out by running through the array backwards

 printf(“The scores in the reverse order are: “);

 for (index = 4; index >= 0; index--)

 	printf(“%d “, test_scores[index]);

}

int main ()

{

 int student[3]; /* declare arrays to hold data. each array has 4 cells */

 int quiz[3];

 int exam[3];

 int avg[3];

 for (int i = 0; i <= 3; i++)

 {

 printf(“Enter student #%d id, quiz, and exam score\n”, i);

 scanf(“%d%d%d\n”, &student[i], &quiz[i], &exam[i]);

 avg[i] = (quiz[i]+exam[i])/200;

 printf(“Student #%d average is %d\n”, i, avg[i]);

 }

int main ()

{

 int student1, student2, student3, student4;

 int quiz1, quiz2, quiz3, quiz4;

 int exam1, exam2, exam3, exam4;

 double avg1, avg2, avg3, avg4;

 printf(“Enter student #1 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student1, &quiz1, &exam1);

 avg1 = (quiz1+exam1)/200;

 printf(“Student #1 average is %d\n”, avg1);

 printf(“Enter student #2 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student2, &quiz2, &exam2);

 avg2 = (quiz2+exam2)/200;

 printf(“Student #2 average is %d\n”, avg2);

 printf(“Enter student #3 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student3, &quiz3, &exam3);

 avg3 = (quiz3+exam3)/200;

 printf(“Student #3 average is %d\n”, avg3);

 printf(“Enter student #4 id, quiz, and exam score\n”);

 scanf(“%d%d%d\n”, &student4, &quiz4, &exam4);

 avg4 = (quiz4+exam4)/200;

 printf(“Student #4 average is %d\n”, avg4);

}

PAGE
7
Arrays -

