

· Computers are devices that do only one kind of thing:

They carry out algorithms to process information.

· To computer scientists, the algorithm is the central unifying concept of computing, the mode of thought that is the core of the computing perspective.
What is an algorithm?
· A set of logical steps to accomplish a task.

· A “recipe of action”.

· A way of describing behavior.
Everyday Algorithms

What is wrong with the following algorithm? (From the back of a shampoo bottle.) Directions: Wet hair. Apply a small amount of shampoo, lather, rinse, repeat.

If you follow this algorithm, you will never finish washing your hair!

Algorithms in Computing

In the realm of computer algorithms, an algorithm is useful only if:

· The algorithm accepts input data (not all do, however).

· The algorithm processes that data in some fashion.

· The algorithm produces some output (the results).

However, to be a correct algorithm, it must correctly solve the problem for any valid input data. Also, for the same input data, it must always give the same answer. Invalid input data should produce an error message or some other indication that the algorithm cannot correctly solve the problem. It should not produce an answer when given incorrect data since the user will think that the answer is valid.

Successful algorithms must consider all possible cases presented by acceptable data. You will succeed more quickly at constructing algorithms if you make it a habit to:

· Think about the problem and its data, then

· Enumerate all the special cases that the algorithm must handle.

Describing Algorithms
In specifying behavior, an algorithm must be:

· Precise

· Unambiguous

· Complete

· Correct

There are various techniques that can be used to describe algorithms:

· Natural language (English)

· Pictures (flow-charts)

· Pseudocode or a specific programming language

Example – Algorithm Representation
Consider an algorithm for registering for classes at UCF.

Natural Language Algorithm

1. Make a list of courses you want to register for, in order of priority.

2. Start with an empty schedule. Number of hours = 0.

3. Choose highest priority class on list.

4. If the chosen class is not full and its class time does not conflict with any class already in the schedule, then register for the class:

4a. Add the class to the schedule.

4b. Add the class hours to the number of hours scheduled.

5. Cross that class off your list.

6. Repeat steps 3 through 5 until the number of hours scheduled is >= 15, or until all classes have been crossed out.

7. Stop.

Flowchart

 no
 yes

yes

 no

yes

 no

 no

 yes

Properties of “Good” Algorithms
1. Precision

· Each step must be clear and unambiguous in its meaning.
· The order of execution of the steps must be clear.
· The number of steps must be finite.
· Each step must be finite.
2. Simplicity

· Each step must be simple enough that it can be easily understood.
· Each step should translate into only a few (or one) computer operation(s) or instruction (s).
3. Levels of Abstraction

· The steps in the algorithm should be grouped into related modules or blocks.
· Modules may be nested (one inside another).
· Other algorithms may be referred to by name rather than including all of their steps in another algorithm.
Abstraction refers to the logical grouping of concepts or objects. This allows you to define and implement in general terms without requiring or specifying the details.

Well-defined algorithms are organized in terms of abstraction. This means that we can refer to each of the major logical steps without being distracted by the details that make up each one. The simple instructions that make up each logical step are hidden inside modules. These modules allow us to function at a higher level, to hide the details of each step inside a module, and then refer to that module by name whenever we need to use it.

Modularization allows us to:

· Build and test each module independently.

· Interchange equivalent modules.

· Reuse modules whenever/wherever required.

By hiding the details inside appropriate modules, we can understand the main ideas without being distracted. This is a key goal of using various levels of abstraction.

· Each module represents an abstraction. The name of the module describes the idea that the module implements. The instructions hidden within the module specify how that abstraction is to implemented.

· We can see what is being done (the idea) by reading the descriptive name of the module without having to pay attention to how it is being implemented.

· If we want to understand how it is implemented, then we can look inside the module to find out.

Example – Levels of Abstraction
Consider the following pie recipe:

1. Prepare apple filling.

2. Prepare crust.

3. Fill crust.

4. Top pie with lattice crust.

5. Bake at 350 degrees for 45 minutes.

6. Cool and serve.

Module Prepare applie filling

.

.

.

Module Prepare crust

.

.

.

The Development of Algorithms
In computer science the algorithm is most often takes the form of software. In order to develop software to solve a particular problem the following steps must be followed:

1. Understanding of the Problem
· The problem must be completely understood in order to determine what is required for its solution.

· In the university/learning environment this means that you need to read the problem carefully!

2. Analysis
· Identify the problem inputs and outputs.

3. Design
· Develop a list of steps (algorithm) to solve the problem.

· Refine the steps of this algorithm. (divide and conquer).

· Verify that the algorithm solves the problem (correctness).

4. Implementation
· Implement the algorithm as a program (C in this course).

· Must know the specific language used for implementation.

· Convert steps of the algorithm into programming language statements.

5. Testing and Verification
· Test the complete program (modules independently) and verify that it works as expected.

· Use different test cases (not just one) including critical test cases.

Examples – Algorithm Refinement
Consider the following algorithm for drinking a glass of water.

1. Enter the kitchen.

2. Get a glass.

3. Get the water from the refrigerator.

4. Fill the glass with water.

5. Drink it.

Refinement of step 1.

1.1 Walk to the kitchen door.

1.2 If the door is closed

1.2.1 Open the door.

1.3 Walk into the kitchen.

Refinement of step 3.

3.1 Open the refrigerator.

3.2 Get the water.

3.3 Closed the refrigerator.

Refinement of step 4.

4.1 While the glass is not full

4.1.1 Pour some water into the glass

Consider the following computational algorithm:

Algorithm Components
· Data structures: Hold the data required by the algorithm.

· Data manipulation instructions: Allow for changes to data values.

· Conditional expressions; Used to make decisions.

· Control structures: Used to act on decisions.

· Modules: Make the abstraction manageable through the use of abstraction.

Data Structures
· Data is the representation of information used by an algorithm, including input and output data as well as any interim data that is generated by the algorithm for its own internal use.

· Data structures are “containers” for data values.

· Data structures can be simple like variables (the average of student grades (real number), or the number of classes in which a student is enrolled (integer number)), constants (like the number pi, or a tax rate), or very complex data structures with special data organization tools that help to solve problems more efficiently (lists, records, arrays, trees, etc.).

· For distinguishing and referral purposes each data structure is given a name.

· Names should be descriptive of the data contained in the structure. For example, a variable which represents the total amount of an unpaid transaction might be named balance but should not be named Fred!

· The descriptive name given to a data structure is called an identifier.
Data Manipulation Instructions
Data manipulation instructions are instructions which:

· Obtain data values from the “world” and store them in data structures.

· Manipulate those values via arithmetic operations, copying the contents of one data structure to another, etc.

· Output the resulting values back into the “world”.

Conditional Expressions
· A computer can make decisions. The ability of an algorithm to make decisions and act on them is what makes algorithms (and computers) powerful.

· All such decisions are based on conditional expressions that are either true or false. For example: “age = 20”, or “salary > 100,000”, etc.

Control Structures
· Control structures allow the computer to act on the decisions that it makes.

· For example:

 If (the class is not full) then add the class to the schedule.

While (there are still data left) read data store data.

Modules
· Algorithms can become very complex and we don’t want an algorithm to be a big sequential list of steps.

· Simply placing all the components of an algorithm together will make it hard to understand, repair, and extend.

· Modules are used to group logically related data and instructions.

· Modules raise the level of abstraction.

· Modules allow: clearer thinking, faster repairs, and easier modifications.

Some additional problems to think about.

1. You are given a set of 3 weights: w1, w2, and w3 in increasing order of weight. You want to determine if some combination of those weights can add up to a specified weight w. Have your algorithm return true if its possible or false otherwise.

2. You are given a list of items. In the list, each item has a price and a particular tax rate. Compute the total that would be spent buying all of these items, including tax.

3. You are given an integer in decimal. Compute if the number is prime or not. (A prime number is one that has no other divisors other than 1 and itself. You may assume that in a single step you can determine if one number divides another evenly or not.)

4. You are given a list of activities that a person does in a day. In addition to the particular activities, you are given how long they do each activity(in hours) and how many calories per hour that activity burns. Assuming that for all hours in the day not listed, the person burns 50 calories an hour, compute the total number of calories burned in a 24 hours period. (You may assume that the activities on the list add up to less than 24 hours.)

Data and Computers
All data that is stored in a modern computer, whether it be numbers, alphabetic characters, images, sounds, movies, etc., are stored as binary numbers.

Binary is a base 2 number system. Binary numbers have only two digits to work with, 0 and 1. Each binary digit is more commonly referred to as a bit. This is a shorthand for binary digit. A binary number is composed of one or more bits.
The decimal system, with which you are probably more familiar, is a base 10 number system. It has 10 digits to work with, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. A decimal number is composed of one or more digits.

For example, the decimal number 3816 represents a specific value which can be calculated as:

(3 (103) + (8 (102) + (1 (101) + (6 (100)

or

(3 (1000) + (8 (100) + (1 (10) + (6 (1)

Binary numbers are represented in a similar form:

The value (in decimal) of the binary number 1101 can be calculated as:

 (1 (23) + (1 (22) + (0 (21) + (1 (20)

= (1 (8) + (1 (4) + (0 (2) + (1 (1)

= 8 + 4 + 1 = (13)10
Powers of Two
Since data is represented in a computer in binary form, we can determine how many bits are required to represent the decimal numbers that are the most common form of input to computer algorithms.

You will find it very useful as you continue your studies in computer science to memorize the first few powers of two, they will be used very often in many areas of computer science.

	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	210

	0
	2
	4
	8
	16
	32
	64
	128
	256
	512
	1024

	211
	212
	213
	214
	215
	216
	217
	218

	2048
	4096
	8192
	16384
	32768
	65536
	131072
	262144

Tables showing powers of 2

Binary/Decimal Number Representations
The table below illustrates the binary/decimal numbers between 0 and 21.

	Decimal
	Binary
	Decimal
	Binary

	0
	0
	11
	1011

	1
	1
	12
	1100

	2
	10
	13
	1101

	3
	11
	14
	1110

	4
	100
	15
	1111

	5
	101
	16
	10000

	6
	110
	17
	10001

	7
	111
	18
	10010

	8
	1000
	19
	10011

	9
	1001
	20
	10100

	10
	1010
	21
	10101

Exercise – You try this one

Write an algorithm to find the minimum of three numbers.

Go through the 5 steps:

Problem understanding.

Analysis: What are the inputs and output?

Design: How will you solve the problem?

Implement the solution in C.

Test and verify the algorithm.

Problem: Calculating the average score of an exam

Inputs:	Scores of an exam for all students taking the exam.

Output:	Average score of the exam.

Algorithm:

Set counter to zero.

Set sum to zero.

While there is an exam to do

Read the score on the exam

Add the score on the exam to the sum

Add one to the count

Move to the next exam

Compute the average score as sum/count.

Display the average score.

Cross class off list

Num_Hours >= 15

END

More classes?

Add class to class schedule

Add class hours to Num_Hours

Is there a time conflict?

Is this class full?

Choose highest priority class on list

Num_Hours = 0

Make list of classes you want to take

Begin

Chocolate Chip Cookies

Ingredients:

2 ¼ cups flour		1 tsp salt

1 tsp baking soda		2 eggs

¾ cup brown sugar		1 tsp vanilla extract

¾ cup granulated sugar	1 cup soft butter

12 oz. semi-sweet chocolate chips

Steps:

Preheat oven to 375 degrees

Combine flour, salt, baking soda, in bowl. Set mixture aside.

Combine sugars, butter, vanilla and beat until creamy.

Add eggs and beat.

Add dry mixture and mix well.

Stir in chocolate chips.

Drop mixture by teaspoons onto ungreased cookie sheet.

Bake 8 to 10 minutes.

Basics of Algorithms

Algorithms - 11

