

Nested Conditional Statements

The if-else statement can be nested to allow the programmer the ability to program a complex decision structure. The general form of a nested if-else statement is shown below:

if (<boolean expression1>)

<statements 1>

else if (<boolean expression2>)

 <statements 2>

else if (<boolean expression3>)

 <statements 3>

. . .

else

 <statements n>

statement A

statement B

. . .

This statement is executed as:

1. Check if <boolean expression1> is true

2. If so, then execute block of statements <statements 1>

3. If not, check if <boolean expression2> is true

4. If so, then execute block of statements <statements 2>

5. If not, check if <boolean expression3> is true

6. Continue in this fashion until one of the boolean expressions is true

7. Skip all remaining blocks of statements and continue execution with statement A, ….

Note: The else clause is always optional. There may be cases in which you do not want to execute any statements based upon a particular decision.

Examples

Note: Having the conditions in the wrong order can lead to errors as the following example illustrates:

Nested If Statements
It is possible to have an if statement inside another if statement. Similarly, one of the statements inside of an else clause may be an if statement. This can lead to a problem with matching the correct else clause to the correct if statement. However, the rule is always the same:

Example

if (month == 4)

if (day > 15)

printf (“Your late with your taxes.\n”);

else printf (
“Hurry, file your taxes before 4/15.\n”);

If the variable month were equal to 7 when this block of code began to execute, what would be printed out? Nothing! If you wanted one of the two messages to be printed regardless of the value of the variable month you would need to do the following:

if (month == 4) {

if (day > 15)

printf (“Your late with your taxes.\n”);

}

else

 printf (“Hurry, file your taxes before 4/15.\n”);

Order of Operations
The order of precedence of && and || is lower than any arithmetic operator. If you ever have any doubt how the computer will interpret your expressions, use parentheses to explicitly dictate how the expression is to be evaluated. By the way, the precedence of && is higher than ||.

(x > 7) || (y < 6) && (z == 3)

will be interpreted as:

(x > 7) || [(y < 6) && (z == 3)]

More Examples

Consider the following problem: Suppose that we need to determine if a specific desk will fit into a given room. Suppose that we know the length and width of both the desk and the room. We want to write a C program that will solve our problem assuming that the user inputs the length and width of the room and the desk. Assume that the user will enter only positive numbers for each dimension.

Does the program below correctly solve our problem?

Question? Will the program shown above generate the correct answer in every situation? Why or why not?

Answer. No, Consider a room which has length = 6 and width = 4 and a desk with length 4 and width 6. The program above will tell you that the desk will not fit when clearly it would fit. What is required is to “rotate” the desk. See the following version of the algorithm for a better solution.

Another way of solving the same problem is to use a more complicated decision structure.

//program to determine if a desk fits into a room given the length and width of both the

// desk and the room.

#include <stdio.h>

int main () {

 int roomlen, roomwid;

 int desklen, deskwid;

 printf(“Enter the length and width of the room.\n”);

 scanf(%d%d”, &roomlen, &roomwid);

 printf(“Enter the length and width of the desk.\n”);

 scanf(%d%d”, &desklen, &deskwid);

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf (“The desk will fit into the room.\n”);

 else if ((deskwid <= roomlen) && (desklen <= roomwid))

 printf (“The desk will fit into the room.\n”);

 else

 printf(“The desk will not fit into the room.\n”);

 return 0;

} //end main

	

//program to determine if a desk fits into a room given the length and width of both the

// desk and the room.

#include <stdio.h>

int main () {

 int roomlen, roomwid;

 int desklen, deskwid;

 int temp; /* used for temporarily holding a value */

 printf(“Enter the length and width of the room.\n”);

 scanf(%d%d”, &roomlen, &roomwid);

 printf(“Enter the length and width of the desk.\n”);

 scanf(%d%d”, &desklen, &deskwid);

 //adjust widths and lengths if necessary

 if (roomlen < roomwid)

 temp = roomlen;

 roomlen = roomwid;

 roomwid = temp;

 if (desklen < deskwid)

 temp = desklen;

 desklen = deskwid;

 deskwid = temp;

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf (“The desk will fit into the room.\n”);

 else

 printf(“The desk will not fit into the room.\n”);

 return 0;

} //end main

	

//program to determine if a desk fits into a room given the length and width of both the

// desk and the room.

#include <stdio.h>

int main () {

 int roomlen, roomwid;

 int desklen, deskwid;

 printf(“Enter the length and width of the room.\n”);

 scanf(%d%d”, &roomlen, &roomwid);

 printf(“Enter the length and width of the desk.\n”);

 scanf(%d%d”, &desklen, &deskwid);

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf (“The desk will fit into the room.\n”);

 else

 printf(“The desk will not fit into the room.\n”);

 return 0;

} //end main

	

// Program Description: This program asks the user for three values: a, b, and c used in

// in the equation ax + by = c used to determine the slope of a line

//			 Using this information the algorithm will determine if the slope of

//			 the line is positive, negative, zero, or undefined (vertical line).

#include <stdio.h>

int main () {

	//read in the values for a, b, and c

	double a, b, c;

	printf(“Enter the values of a, b, and c for your line. \n”);

	scanf(“%lf%lf%lf”, &a, &b, &c);

	//handle the invalid case

	if (a == 0) && (b == 0)

	 printf(“Sorry! You did not enter a valid line equation.\n”);

	else {

		//Handle all valid cases separately

		if (b == 0)

		 printf (“The slope is undefined. This is a vertical line.\n”);

		else if (a == 0)

			printf(“The slope of the line is 0.\n”);

		else if (a/b > 0)

			printf(“The slope of the line is positive.\n”);

		else

			printf(“The slope of the line is negative.\n”);

	}

} //end main

Without curly braces to override placement an else clause is always associated with the nearest if statement.

/************ Assigning Letter Grades - BAD EXAMPLE *********************/

int	num_avg;

char	letter_grade;

scanf(“%d”, &num_avg);	/* input numerical average score */

if (num_avg < 60)

	letter_grade = ‘F’;

else if (num_avg >= 60)

	letter_grade = ‘D’;

else if (num_avg >= 70)

	letter_grade = ‘C’;

else if (num_avg >= 80)

	letter_grade = ‘B’;

else

	letter_grade = ‘A’;

printf(“Your grade is: %c\n”);

/********************* Assigning Letter Grades **********************************/

int	num_avg;

char	letter_grade;

scanf(“%d”, &num_avg);	/* input numerical average score */

if (num_avg >= 90)

	letter_grade = ‘A’;

else if (num_avg >= 80)

	letter_grade = ‘B’;

else if (num_avg >= 70)

	letter_grade = ‘C’;

else if (num_avg >= 60)

	letter_grade = ‘D’;

else

	letter_grade = ‘F’;

printf(“Your grade is: %c\n”);

Basics of Algorithms – Chapter 3

PAGE
26
Algorithms -

