University of Central Florida

Department of Electrical Engineering & Computer Science

COP 3402: System Software

Spring 2011
Homework #4 (PL/0 Compiler)

Due Friday July 29th, 2010 by 11:59 p.m.

NEW REQUIRMENT:

All assignments must compile and run on the Eustis server. Please see course website for details concerning use of Eustis.

Objective:

In this assignment, you must implement a Recursive Descent Parser and an Intermediate Code Generator for PL/0 (see grammar below). In addition, you must create a compiler driver to combine all of the compiler parts into one single program.

Example of a program written in PL/0:

read (w);

begin
 x:= 4;

 if w > x then

w:= w + 1

 else

w:= x;

end

write w;

Component Descriptions:

The compiler driver is a program that manages the parts of the compiler. It must handle the input, output, and execution of the Scanner (HW2), the Parser (HW3), the Intermediate Code Generator (HW3) and the Virtual Machine (HW1).

The compiler must read a program written in PL/0 and generates code for the Virtual Machine (VM) you implemented in HW1. Your compiler must neither parse nor generate code for programming constructs that are not in the grammar described below.

Submission Instructions:

1.- Submit via WebCourses:

1. Source code of the PL/0 compiler.

2. A text file with instructions on how to use your program entitled readme.txt.

3. A text file composed of the input file to your Scanner and the output of your Parser to demonstrate a correctly formed PL/0 program. The Parser output should indicate the program is syntactically correct. Following the statement that the program is syntactically correct, the text file should contain the generated code from your intermediate code generator and the stack output from your Virtual Machine running your code.

4. A text file composed of the input file to your Scanner and the output of your Parser to demonstrate all possible errors. This may require many runs and the Parser output should indicate which error is being identified.

5. All files should be compressed into a single .zip format.

6. Late assignments will not be accepted.

2.- Submit in class the next class day following the due date:

1. A hard copy of the User’s Guide for the PL/0 compiler.

The User’s Guide should assume that the user has no experience whatsoever with the compiler and the PL/0 language and very little experience with the platform on which the compiler is run. At the very least, the User’s Guide should cover:

1. How to compile and run the PL/0 compiler.

2. How to use the PL/0 compiler once it is running.

3. How to use the PL/0 language.

a. E.g. how to use an “if” statement, how to assign a value to a variable, etc.

b. Examples of PL/0 code are very helpful.

Appendix A:

Traces of Execution:

Example 1, if the input is:

var x, y;

begin

 x := y + 56;

end.

The output should look like:

1.- A print out of the token (internal representation) file:

29 2 1 17 2 2 18 21 2 1 20 2 2 4 3 56 18 22 19

And it’s symbolic representation:

varsym identsym.1 commasym identsym 2 semicolon beginsym identsym 1 becomessym identsym 2 plussym numbersym 56 semicolonsym endsym periodsym

2.- Print out the message “ No errors, program is syntactically correct”

3.- Print out the generated code

4.- Run the program on the VM virtual machine (HW1)

Example 2, if the input is:

var x, y;

begin

 x := y + 56;

end  (notice period expected after the “end” reserved word)

The output should look like:

1.- A print out of the token (internal representation) file:

29 2 1 17 2 2 18 21 2 1 20 2 2 4 3 56 18 22

And its symbolic representation:

varsym identsym.1 commasym identsym.2 semicolon beginsym identsym.1 becomessym identsym.2 plussym 3.56 semicolonsym endsym

2.- Print the message “Error number xxx, period expected”

var x, y;

begin

 x := y + 56;

end

 ***** Error number xxx, period expected

Example 3: Use this example (recursive program) to test your compiler:

var f, n;

procedure fact;

var ans1;

begin
 ans1:=n;

 n:= n-1;

 if n = 0 then f := 1;

 if n > 0 then call fact;

 f:=f*ans1;

end;
begin
n:=3;

call fact;

write f ;

end.

Example 4:Use this example (nested procedures program) to test your compiler:

var x,y,z,v,w;

procedure a;

 var x,y,u,v;

 procedure b;

 var y,z,v;

 procedure c;

 var y,z;

 {

 z:=1;

 x:=y+z+w

 };

 {

 y:=x+u+w;

 call c

 };

 {

 z:=2;

 u:=z+w;

 call b

 };

{

 x:=1; y:=2; z:=3; v:=4; w:=5;

 x:=v+w;

 write z;

 call a;

}.

Appendix B:

EBNF of PL/0:

program ::= block "." .

block ::= const-declaration var-declaration procedure-declaration statement.

constdeclaration ::= ["const" ident "=" number {"," ident "=" number} ";"].

var-declaration ::= ["var "ident {"," ident} “;"].
procedure-declaration ::= { "procedure" ident ";" block ";" }
statement ::= [ident ":=" expression

| "call" ident

| "begin" statement { ";" statement } "end"

| "if" condition "then" statement ["else" statement]

| "while" condition "do" statement

| "read" "(" ident ")“

| "write" "(" expression ")“

| e] .
condition ::= "odd" expression

| expression rel-op expression.

rel-op ::= "="|“!="|"<"|"<="|">"|">=“.
expression ::= ["+"|"-"] term { ("+"|"-") term}.
term ::= factor {("*"|"/") factor}.

factor ::= ident | number | "(" expression ")“.
number ::= digit {digit}.
ident ::= letter {letter | digit}.
digit ;;= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9“.
letter ::= "a" | "b" | … | "y" | "z" | "A" | "B" | ... | "Y" | "Z".
Based on Wirth’s definition for EBNF we have the following rule:

[] means an optional item.
{ } means repeat 0 or more times.
Terminal symbols are enclosed in quote marks.

A period is used to indicate the end of the definition of a syntactic class.
Appendix C:

Error messages for the tiny PL/0 Parser:

1. Use = instead of :=.

2. = must be followed by a number.

3. Identifier must be followed by =.

4. const, var, procedure must be followed by identifier.

5. Semicolon or comma missing.

6. Incorrect symbol after procedure declaration.

7. Statement expected.

8. Incorrect symbol after statement part in block.

9. Period expected.

10. Semicolon between statements missing.

11. Undeclared identifier.

12. Assignment to constant or procedure is not allowed.

13. Assignment operator expected.

14. call must be followed by an identifier.

15. Call of a constant or variable is meaningless.

16. then
 expected.

17. Semicolon or } expected.

18. do expected.

19. Incorrect symbol following statement.

20. Relational operator expected.

21. Expression must not contain a procedure identifier.

22. Right parenthesis missing.

23. The preceding factor cannot begin with this symbol.

24. An expression cannot begin with this symbol.

25. This number is too large.

Appendix D:

Recursive Descent Parser for a PL/0 like programming language in pseudo code:

As follows you will find the pseudo code for a PL/0 like parser. This pseudo code will help you out to develop your parser and intermediate code generator for tiny PL/0:

 procedure PROGRAM;

 begin

 GET(TOKEN);

 BLOCK;

 if TOKEN != "periodsym" then ERROR

 end;

 procedure BLOCK;

 begin

 if TOKEN = "constsym" then begin

 repeat

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN);

 if TOKEN != "eqsym" then ERROR;

 GET(TOKEN);

 if TOKEN != NUMBER then ERROR;

 GET(TOKEN)

 until TOKEN != "commasym";

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 if TOKEN = "var" then begin

 repeat

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN)

 until TOKEN != "commasym";

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 while TOKEN = "procsym" do begin

 GET(TOKEN);

 if TOKEN != “identsym” then ERROR;

 GET(TOKEN);

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN);

 BLOCK;

 if TOKEN != "semicolomsym" then ERROR;

 GET(TOKEN)

 end;

 STATEMENT

 end;

 procedure STATEMENT;

 begin

 if TOKEN = "identsym" then begin

 GET(TOKEN);

 if TOKEN != "becomessym" then ERROR;

 GET(TOKEN);

 EXPRESSION

 end

 else if TOKEN = "callsym" then begin

 GET(TOKEN);

 if TOKEN != "identsym" then ERROR;

 GET(TOKEN)

 end

 else if TOKEN = "beginsym" then begin

 GET TOKEN;

 STATEMENT;

 while TOKEN = "semicolomsym" do begin

 GET(TOKEN);

 STATEMENT

 end;

 if TOKEN != "endsym" then ERROR;

 GET(TOKEN)

 end

 else if TOKEN = "ifsym" then begin

 GET(TOKEN);

 CONDITION;

 if TOKEN != "thensym" then ERROR;

 GET(TOKEN);

 STATEMENT

 end

 else if TOKEN = "whilesym" then begin

 GET(TOKEN);

 CONDITION;

 if TOKEN != "dosym" then ERROR;

 GET(TOKEN);

 STATEMENT

 end

 end;

 procedure CONDITION;

 begin

 if TOKEN = "oddsym" then begin

 GET(TOKEN);

 EXPRESSION

 else begin

 EXPRESSION;

 if TOKEN != RELATION then ERROR;

 GET(TOKEN);

 EXPRESSION

 end

 end;

 procedure EXPRESSION;

 begin

 if TOKEN = "plussym"or "minussym" then GET(TOKEN);

 TERM;

 while TOKEN = "plussym" or "slashsym" do begin

 GET(TOKEN);

 TERM

 end

 end;

 procedure TERM;

 begin

 FACTOR;

 while TOKEN = "multsym" or "slashsym" do begin

 GET(TOKEN);

 FACTOR

 end

 end;

 procedure FACTOR;

 begin

 if TOKEN = "identsym then

 GET(TOKEN)

 else if TOKEN = NUMBER then

 GET(TOKEN)

 else if TOKEN = "(" then begin

 GET(TOKEN);

 EXPRESSION;

 if TOKEN != ")" then ERROR;

 GET(TOKEN)

 end

 else ERROR

 end;

Appendix E:

Symbol Table

Recommended data structure for the symbol.

typedef struct

 {

int kind;

// const = 1, var = 2, proc = 3

char name[10];
// name up to 11 chars

int val;

// number (ASCII value)

int level;

// L level

int addr;

// M address

 } symbol;

symbol_table[MAX_SYMBOL_TABLE_SIZE];

For constants, you must store kind, name and value.

For variables, you must store kind, name, L and M.

For procedures, you must store kind, name, L and M.

