Assignment # 3

.

1. Write an unambiguous grammar that leads to correct parse trees for the language consisting of expressions involving the operand ID and the operators described below.

OPERATOR
ASSOCIATIVITY
PRECEDENCE

BINARY/UNARY

!, &

right to left

Highest (4)

Binary

@

left to right

High (3)

Binary
^

right to left

Medium (2)

Unary

#,$

left to right

Lowest (1)

Binary

Parentheses are also allowed, with their usual interpretation.

2. Write a sequence of lex-style regular expressions for each of the following sets
A = { w | w is over the alphabet {a,b} and all a’s occur before any b’s }
B = { x | x is an alpahanumeric string that starts with an alphabetic character }
C = { list | list consists of one or more strings from B separated by commas }
3. Assume procedures have already been written to do a recursive descent parse of expressions (EXPRESSION) and of statements (STATEMENT), write the procedure needed to do a recursive descent parse of the Pascal style FOR statement. Assume token are returned by a procedure TOKEN which sets a global variable SY. Assume SY = FORSY at start. Assume SY = IDENT on an identifier, SY = ASSIGN on ":=", TOSY on "TO", DOWNSY on "DOWNTO" and DOSY on "DO". Recall that the FOR statement looks like one of the following
FOR index := expression TO expression DO statement
FOR index := expression DOWNTO expression DO statement
4. Compute the FIRST and FOLLOW sets for the following grammar's non-terminals. Produce the LL(1) parsing table based on these.

Stmt
(
WHILE Exp DO Stmt | BASIC

Exp
(
Var = Var | Var > Var

Var
(
ID [NUM] | ID

