COP 3402 System Software	Spring 2001 – Pass 1

This document describes Pass1 of the assembler project. You are to write Pass 1 in standard C code and make sure that it will run on the Olympus1 system, compiled in gcc. Further details on what you are to hand in will be provided in your labs. Remember that the assembler is not case-sensitive: identifiers, opcode names and labels can be in upper or lower case.

Input file:

Your Pass 1 program will prompt the user for the input filename. The input file will be an assembler program written to conform with the UCF 3402 machine language, described in the documents provided in the lecture class. The input file will be similar to the example shown below. The filename will always end in the ".asm" extension.

You will be provided with an ASCII text file called opcode.tab that contains the complete set of opcodes. The file contains 4 columns, one each for:

the opcode's mnemonic name

the opcode's instruction format number

the number of operands for that opcode

the 6-bit opcode (in hexadecimal)

EXAMPLE.ASM

.PROGRAM		example

.CONST					# constants

	SIZE	HALF	10			# decimal constant

	LTR	BYTE	$’A’			# character constant

	MAX	HALF	%0C			# hex constant

	NAME	BYTE	$”Your Name”	# string constant

	TWO	HALF	^0010			# binary constant

.CODE						# code starts here

		MOV	R3, R0

		ADDI	R4, R0, SIZE

		MULTI	R4, R4, TWO

		SUBI	R4, R4, TWO

	TOP:	SLT	R10, R4, R0

		BNEZ	R10, BOTTOM

		ADD	R3, R3, R4

		SH	R4, ARRAY, R4

		SUBI	R4, R4, TWO

		JR	TOP

	BOTTOM:	SW	R0, X, R3

		EXIT	0

data section

.DATA	

	ARRAY	DEFH	SIZE		# array of 10 halfwords

	X	DEFW	1		# long integer

	INDEX	DEFB	1		# short integer

	SUBR	DEFX	1		# external reference

.EXTERN

	SUBR	MYLIB			# unused subroutine

.END

Sample input file: example.asm

�
Output files:

Your Pass 1 will produce two output files:

The intermediate code file will contain all of the DATA definitions, CONST declarations, EXTERN associations and CODE instructions that are found in the input file, plus any assigned addresses and any errors encountered in Pass 1. Errors will be printed on the line following the error. If any errors are found, the count of errors will be printed at the bottom of the file (see the example of an intermediate file that includes errors). An example of an intermediate file for a program that contains no errors is shown below. The intermediate file's filename will be based on the input filename, but with the extension ".int" instead of ".asm".

	# EXAMPLE.ASM

	.PROGRAM		example

	.CONST					# constants

		SIZE	HALF	10			# decimal constant

		LTR	BYTE	$’A’			# character constant

		MAX	HALF	%0C			# hex constant

0000		NAME	BYTE	$”Your Name”	# string constant

		TWO	HALF	^0010			# binary constant

	

	.CODE						# code starts here

0000			MOV	R3, R0

0004			ADDI	R4, R0, SIZE

0008			MULTI	R4, R4, TWO

000C			SUBI	R4, R4, TWO

0010		TOP:	SLT	R10, R4, R0

0014			BNEZ	R10, BOTTOM

0018			ADD	R3, R3, R4

001C			SH	R4, ARRAY, R4

0020			SUBI	R4, R4, TWO

0024			JR	TOP

0028		BOTTOM:	SW	R0, X, R3

0030			EXIT	0

	# data section

	.DATA	

000A		ARRAY	DEFH	SIZE		# array of 10 halfwords

0020		X	DEFW	1		# long integer

0024		INDEX	DEFB	1		# short integer

0028		SUBR	DEFX	1		# external reference

	

	.EXTERN

		SUBR	MYLIB			# unused subroutine

	.END

Sample intermediate file: example.int

The symbol table output file will contain the entire symbol table along with certain specific information about each symbol (see the example below). The symbol table output file's filename will be based on the input filename, but with the extension ".sym" instead of ".asm ". The symbol table output format will include:

the symbol's name

the symbol's size in bytes (for data and constants)

the symbol's type (constant, data, label or external reference)

the symbol's value (for constants)

the symbol's address (for data, labels and string constants)

�
The symbol table will also include two special symbols, CODE_SIZE and DATA_SIZE, that will contain the total size of the code section and of the combination of the data section and the string constants, respectively. These symbols will be added after the program file has been scanned and all addresses have been assigned. The example below shows the fields and information that should be output to the symbol table file at the end of pass 1. Note that the "type" column shows the specific format for constants and the "value" column shows the same value (minus the prefix) shown in the constant's declaration.

identifier	size	type	value		address

SIZE	2 bytes	dec	10

LTR	1 byte	char	'A'

MAX	2 bytes	hex	0C

NAME	9 bytes	str	”Your Name”		0000

TWO	2 bytes	bin	0010

ARRAY	20 bytes	data			000A

X	4 bytes	data			0020

INDEX	1 byte	data			0024

SUBR	4 bytes	extern			0028

TOP		label			0010

BOTTOM		label			0028

CODE_SIZE	34 bytes

DATA_SIZE	44 bytes

Sample Symbol Table file, based on example.asm

Internal Data Structures in Pass 1:

Pass 1 needs several important data structures, the opcode table, the symbol table and location counters for code and data/string constants. Both tables should be created as an array of structures in C. The arrays should be large enough to hold all expected entries. Since there are exactly 50 opcodes in the language, the opcode table size is known. However, the size of the symbol table is unknown until after the first pass. Therefore, we will set its size to at least 200 entries. The fields in both tables are up to you, but you must store all information needed by Pass 2 of the assembler, so you should expect to add whatever fields are needed to accomplish that goal. The minimum information in each of the tables is described below.

Opcode Table Format:

The opcode table will be loaded from the file opcode.tab before Pass 1 starts. The file pointer for opcode.tab is provided (optabfp) and is opened before your Pass 1 is called by assembler.c.

You can use that file pointer in your Pass 1 function to load the opcode table. As mentioned above, the file opcode.tab contains four pieces of information related to each opcode and you should store each of those items in the table. The file opcode.tab is already sorted alphabetically. You are not required to use any specific algorithm for finding opcodes in the table, a simple linear search is sufficient.

Symbol Table Format:

The symbol table built by Pass 1 will include all constant declarations from the .CONST section, all data definitions from the .DATA section and all labels in the CODE section, plus the CODE_SIZE and DATA_SIZE symbols discussed above. For each entry in the symbol table, you must include at least the information shown in the symbol table output format above. You may add anything that you believe would be helpful, but should only include the information specified above in the output file. You are not required to use any specific algorithm for finding symbols in the table, a simple linear search is sufficient.

�
Error Detection in Pass 1:

You are to perform the following error checking in Pass 1 and report any errors found. Errors will fall into several categories and the error messages printed in the intermediate file should be standardized to match the examples shown below. The error message should be printed on the line immediately following the line where the error occurred.

If errors are found, and it is possible to do so, continue Pass 1 so all errors can be found. However, if any errors are found in Pass 1, Pass 2 will not be started. The total number of errors found should be counted and, if any errors are found, that total should be printed as a comment at the end of the intermediate file output. The total error count from Pass 1 will be returned when Pass 1 is complete.

Undefined Constant – any constant used in either the DATA or CODE sections should have already been defined in the CONST. If not, an error has occurred. The error message should read: "ERROR: Undefined Constant %s" with the undefined constant's name.

Duplicate Symbol – each constant, variable name or jump target label should be unique. Also, no opcode or assembler directive can be used as an identifier or label and no label or identifier can be "R" followed by a number from 0 to 31 (i.e., you can't use a register name). The error message should read: "ERROR: Duplicate Symbol %s" with the duplicate identifier or label.

Invalid Opcode – any operation name that is not in the opcode table is undefined. The error message should read: "ERROR: Invalid Opcode %s" with the invalid opcode name.

Syntax Error – the only syntax errors that will be checked in Pass 1 are:

the incorrect number of operands for an operation

an constant declaration or data definition that is incomplete (missing a value or size)

an incorrectly-formed identifier or label (an identifier that starts with or contains invalid characters)

an incorrect assembler directive (e.g., using BYTE in the .DATA section or a DEF_ in the .CONST section)

an invalid literal (a literal without the required type specifier (%, ^ ,$) in the .CONST and .CODE sections or the use of a type specifier in the .DATA section or an un-terminated quote in a constant string)

The error message should read: "ERROR: Syntax Error %s" with the symbol or the string that includes the error.

Undetermined Error – an error that doesn't fall into one of the above categories, but would keep the assembler from completing its task. These errors could include: missing or misspelled assembler directives, incomplete lines of code (a label without an opcode). The error message should read: "ERROR: Undetermined Error". Since it may be difficult to determine what caused the error, no label or string is output. It is left to the programmer to determine what caused the error. This error message should be printed on the line following the line where the error occurred, where possible.

�
Sample intermediate file with errors, based on example.asm

	# BAD.ASM

	.PROGRAM		bad

	.CONST						# constants

		SIZE	HALF	10			# decimal constant

		LTR	HALF	$’A’			# character constant

ERROR: Syntax Error LTR

		MAX	HALF	%0C			# hex constant

0000		NAME	BYTE	$”Your Name”	# string constant

		TWO	HALF	^0010			# binary constant

	

	.CODE						# code starts here

0000			MOVE	R3, R0

ERROR: Invalid Opcode MOVE

0004			ADD	R4, R0, SIZE

ERROR: Syntax Error ADD

0008			MULTI	R4, R4, TWO

000C			SUBI	R4, R4, TWO

0010		TOP	SLT	R10, R4, R0

ERROR: Invalid Opcode TOP

0014			BNEZ	R10, BOTTOM

0018			ADD	R3, R3, R4

001C			SH	R4, ARRAY, R4

0020			SUBI	R4, R4, TOO

ERROR: Undefined Constant TOO

0024			JR	TOP

0028		BOTTOM:	SW	R0, X, R3

0030			EXIT	0

	# data section

	.DATA	

000A		ARRAY	DEFH	SIZE		# array of 10 halfwords

		SIZE	DEFW	1

ERROR: Duplicate Symbol SIZE

0020		X	DEFW	1		# long integer

0024		INDEX	BYTE	1		# short integer

ERROR: Syntax Error INDEX

0028		SUBR	DEFX	1		# external reference

	

	.EXTRN

ERROR: Undetermined Error

		SUBR	MYLIB			# unused subroutine

ERROR: Syntax Error SUBR

	.END

Total Error Count:	9

Page � PAGE �5�

Pass 1 must be submitted by midnight on Saturday March 3, 2001		Page � PAGE �1�

