COP3402
–
 –

COP3402
Fall 2011
Final Exam
Sample Problems

1. Write a sequence of lex-style regular expressions for each of the following sets

A = { w | w is over the alphabet {a,b,1,2} and with every numerical character preceded by an alphabetic one }

B = { x | x is a binary string of odd parity }

2. Write an unambiguous grammar that leads to correct parse trees for the language consisting of expressions involving the operand ID and the operators described below.

OPERATOR
ASSOCIATIVITY
PRECEDENCE
BINARY/UNARY

-, +

right to left

High (3)

Unary

^

right to left

Medium (2)

Binary

&, |

left to right

Low (1)

Binary

Parentheses are also allowed, with their usual interpretation.

Present a parse tree, using your grammar, for the string

- + ID & ID ^ - ID ^ ID

3. Consider the repeat statement, which has the following description:

repeat_stmt (REPEAT POSITIVE IDENT = expression SEMICOLON

An expression involves IDENTs, positive numbers and the binary operators, +, and *, with normal precedence and associativity. Expressions can also involve parentheses for subexpressions. Write the procedures, repeat_stmt() and expression(), needed to do a recursive descent parse of a REPEAT statement. Assume token are returned by a procedure token() which sets a global variable SY. Assume SY = REPEAT at start. Assume SY = IDENT on an identifier, SY = POSITIVE on a positive number, ASSIGN on “=”, SEMICOLON on ";", LPAREN on a “(“, RPAREN on a “)”, PLUS on a “+” and TIMES on a “*”

4. Redo #3 but with a Bison grammar. Recall how precedences are set. (To be honest, I’ll remind you.)
5. What are the triples that might be generated as intermediate code for? Assume an instruction exists called BCT such that

BCT
x
[loc]
Does: x--; if (x) goto loc

REPEAT 7 a = (b+a) * e * 2 + d;
1. CON
7
0

2. :=
T1
[1]
3. +
b
a

4. *
[3]
e

5. +
[4]
[4]
// ok, so I kinda cheated

6. +
[5]
d

7. :=
a
[6]

8. BCT
T1
[3]
6. Consider the following bison grammar for binary real numbers. Add actions at each rule so the printf will print the real version of the input

%union{
int ival;

float rval; }

%type <rval> R F

%type <ival> N B D
%%

N:
R

{ printf("value = %f\n", $1); };

R:
B '.' F

 |

B

;

B:
B D

 |

D

;

F:
D F

 |

D

;

D:
'0'

 |

'1'

;
%%

#include "lex.yy.c"

where the Flex is created by

%%

.
{ return(yytext[0]); }

EXAMPLE: Input = 101.101. Output is 5.625

7. Consider the following context free grammar

S : E ';' | 'if' E 's' | B 's' | 'if' B ';'

(1) to (4)

E : 'exp'

(5)

B : 'exp'

(6)

a. I developed the SLR states and included actions and goto for States 0&1. Show these for all other states. Describe any conflicts.
State0:

 $accept->°S

 S->°E;

 S->°iEs

 S->°Bs

 S->°iB;

 E->°x

 B->°x

 i shift 3; x shift 5; S goto 1; E goto 2; B goto 4

State1:

 $accept->S°

$accept on eof

State2:

 S->E°;

State3:

 S->i°Es

 S->i°B;

 E->°x

 B->°x

State4:

 S->B°s

State5:

 E->x°

 B->x°

State6:

 S->E;°

State7:

 S->iE°s

State8:

 S->iB°;

State9:

 S->Bs°

State10:

 S->iEs°

State11:

 S->iB;°

b. Do the same for the LR(1) parser.

State0:

 $accept->°S, $

 S->°E;, $

 S->°iEs, $

 S->°Bs, $

 S->°iB;, $

 E->°x, ;

 B->°x, s

i shift 3; x shift 5; S goto 1; E goto 2; B goto 4

State1:
 $accept->S°, $

$accept on eof

State2:
 S->E°;, $

State3:
 S->i°Es, $

 S->i°B;, $

 E->°x, s

 B->°x, ;

State4:
 S->B°s, $

State5 - Goto(State0,x):

 E->x°, ;

 B->x°, s

State6:
 S->E;°, $

State7:
 S->iE°s, $

7 --> s --> 11

State8:
 S->iB°;, $

State9:
 E->x°, s

 B->x°, ;

State10:
 S->Bs°, $

State11:
 S->iEs°, $

State12:
 S->iB;°, $

c. Do same for LALR(1) parser, but I don’t give you a head start.
8. Recall the "Reaching Definitions" analysis problem. This computes for each basic block the values REACH_IN and REACH_OUT, where

REACH_IN[B] = { d | d is a def. that reaches the top of B }

REACH_OUT[B]= { d | d is a def. that reaches the bottom of B }

In order to compute these values we assume the prior computation of the values

KILL[B] = { d | d is a def. and its direct effect is killed in B }

GEN[B] = { d | d is a def. in B which is not superseded by any later def. in B }

Consider the following flow graph

 =================== KILL[1]={

 B1 = d1 : i := m-1 = GEN[1] ={

 = d2 : j := n = IN[1] ={

 = d3 : a := t = OUT[1] ={

 ===================

 |

 +<----------------------------------+

 | |

 =================== G[2]={ |

 B2 = d4 : i := i+1 = K[2]={ |

 = d5 : j := j-1 = I[2]={ |

 =================== O[2]={ |

 | |

 +----------+------------+ |

 B3 | | B4 |

 K[3]={ =================== ================= K[4]={ |

 G[3]={ = d6 : a := u = = d7 : i := v = G[4]={ |

 I[3]={ =================== ================= I[4]={ |

 O[3]={ | | O[4]={ |

 +-----------------------+--------------------->+

(a) What are the values of KILL and GEN for each of the above four blocks? Place your answer sets right next to each block in the space allocated. Use a shorthand notation so that {1,4,6} stands for {d1,d4,d6}.

(b) What are the recurrence relations that can be used to compute REACH_IN and REACH_OUT for each of these blocks?

(c) What are the values of REACH_IN and REACH_OUT? Again, place your answers next to the corresponding blocks.

(a) What is the hierarchy among the grammar classes SLR(1), canonical LR(1), and LALR(1)?

(b) What is the hierarchy among the language classes deterministic context free, LL(1), LR(1)?

(c) Give an example assignment in which an algebraic identity might be applied to a triple.

(d) If a data flow problem is a MAY / BACKWARD FLOW, what will be the appropriate order of processing blocks, and will we be performing intersections or unions?

(e) What is the difference between intra- and inter-procedural analyses?
10.

Present the CKY recognition matrix for the string a – a + a - a assuming the Chomsky Normal Form grammar specified by the rules
E (
E F | M E | P E | a

F (
M F | P F | M E | P E

P (
+

M (
(

	
	a
	(
	a
	+
	a
	(
	a

	1
	
	
	
	
	
	
	

	2
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	

	6
	
	
	
	
	
	
	
	
	

	7
	E
	
	
	
	
	
	
	
	

Be sure to note whether or not the string is accepted.

