COP3402Fall2011
–
 –
Exam#1

COP3402
Exam #1
Fall 2011
Name

1. Write a sequence of regular expressions (lex-style or standard notation) for each of the following sets

A = { w | w is a string over the alphabet {a, b, c}, with all a’s (there must be at least one a) preceding any b’s or c’s (there do not need to any b’s or c’s) }

2
A = ___

B = { x | x is a non-empty binary string that that has no leading zeroes unless it is the binary string 0 }

Examples: 0, 10, 1100 but not 00 or 010 or 01100
2
B = ___

C = { list | list consists of strings containing any non-empty combination of lowercase letters and digits, separated by colons }

Examples: ab, 1c:d5, 657:a:b7b
2
C = ___

2. Consider the language

 L = { ai bj ck | j = i or j = k, i,j,k>0 }

The following is a grammar for L.
 S (AD | EC
 D (bDc | bc
 E(aEb | ab
 A (aA | a
 C (cC | c
4
Show this is an ambiguous grammar. You may show by demonstrating two distinct Leftmost Derivations or two distinct Rightmost Derivations for some string that is in L. Hint: L is inherently ambiguous, so certain strings have multiple derivations by the nature of the language.
3. Consider the concept of Chomsky Normal Form Context Free Grammars.
2
What are the legal forms of a string on the right-hand side of a production?

4. Consider expressions over the operand token called ID where the operators are defined by the following precedences and associativity.
OPERATOR
ASSOCIATIVITY
PRECEDENCE
BINARY/UNARY

@, $

right to left

High (3)

Unary

#, %

right to left

Medium (2)

Binary

&

left to right

Low (1)

Binary

Parentheses are also allowed, with their usual interpretation.
6
Write an unambiguous grammar that leads to correct parse trees for this expression language.
4
Present a parse tree, using your grammar, for the string

@
$
ID
%
ID
#
ID
&
ID

5. Consider the for statement, which has the following description:

for (FOR IDENT = expression TO expression DO statement SEMICOLON

10
You may assume the existence of expression() and statement(). These parse expressions and statement, respectively. Write the function, for_statement(), needed to do a recursive descent parse of a for statement. Assume tokens are returned by a procedure token() which sets a global variable SY. Assume SY = FORSY at start. Assume SY = IDENT on an identifier, ASSIGN on “=”, SY = TOSY on the lexeme “TO”, SY = DOSY on the lexeme “DO”, and SY=SEMICOLON on “;”. Your routine should call error(), if it ever encounters a syntax error.
void for_statement() {

}

6. Consider a grammar
G = ({Stmt, RestIf, Expr}, {IF, ELSE, BASIC, BOOL}, Stmt, P), where P is:
1. Stmt

(
IF Expr Stmt RestIf

2.

 |
BASIC
3. RestIf

(
ELSE Stmt
4.

 |
(
5. Expr

(
BOOL

6
Compute the FIRST and FOLLOW sets for this grammar's non-terminals.

FIRST(Stmt) = {

}
FOLLOW(Stmt) = {

}

FIRST(RestIf) = {

}
FOLLOW(RestIf) = {

}

FIRST(Expr) = {

}
FOLLOW(Expr) = {

}

5
Produce the LL(1) parsing table based on these sets. Fill in production numbers, not productions.

	
	IF
	ELSE
	BASIC
	BOOL
	$

	Stmt
	
	
	
	
	

	RestIf
	
	
	
	
	

	Expr
	
	
	
	
	

1
Does this parse table contain any conflicts? If so, what are they? If not, what does this say about the grammar?
7. Indicate which of the following are true (T) and which are false (F).
5

	Statement
	Veracity (True or False)

	Any inherently unambiguous language has an LL(1) grammar
	

	Lexical analyzers determine if an arithmetic expression is well formed
	

	Recursive descent parsers are associated with left recursive grammars
	

	Syntax analyzers use finite state automata to parse strings
	

	CKY is an example of a “Dynamic Programming” algorithm
	

8. The following segment of a grammar contains at least one occurrence of left recursion.
subscripts
(
subscripts COMMA sub

|
sub
sub

(
LEFT NUM RIGHT

|
LEFT ENUM RIGHT
Here COMMA, NUM, ENUM, LEFT and RIGHT are terminals; subscripts and sub are non-terminals.
3
Rewrite these original grammar rules in Extended BNF (EBNF) notation.
3
Starting with the original grammar (not the EBNF), remove left recursion. You do not have to replicate unchanged rules.
3
Perform left factoring on the grammar you developed in the part above. You do not have to replicate unchanged rules.
9. Consider a grammar
G = ({Stmt, RestIf }, {IF, ELSE, ENDIF, B, BOOL}, Stmt, P), where P is:
Stmt
(
IF BOOL Stmt RestIf

 |
B

RestIf
(
ELSE Stmt END

 |
END
7
Show the contents of the stack at every step of a top-down predictive parse of the string. Be sure to show what remains of the input string at every stage as well.

IF BOOL B ELSE B END $

The stack starts with two items. On the bottom is a $, signifying end of input and on the top is the non-terminal Stmt. The following is to simplify your writing but is guaranteed to have more steps that needed. Note: There are more than enough lines here to complete your trace.
Stack = Stmt $

Input = IF BOOL B ELSE B END $
Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

Stack =

Input =

10. Present the CKY recognition matrix for the string a a b b c c assuming the grammar
8
G = ({S, A, B. C, D, E, F, G, H, I}, {a. b. c}, S, P), where P is

 S (HD | EI
 D (BF | BC
 E (AG | AB
 F (DC
 G (EB
 H (AH | a

 I (CI | c

 A (a

 B (b
 C (c

	
	a
	a
	b
	b
	c
	c

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

1
Is this string, a a b b c c , in the language generated by G?.

1
How can you tell a parse is ambiguous using the CKY technique?

