
COP 3330: Classes In Java – Part 3 Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2008

Classes In Java – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2008

COP 3330: Classes In Java – Part 3 Page 2 © Mark Llewellyn

Abstract Classes

• In the inheritance hierarchy, classes become
more specific and concrete with each new
subclass. If you move from a subclass back up
to a superclass, the classes become more general
and less specific.

• Class design should ensure that a superclass
contains common features of its subclasses.

• Sometimes a superclass is so abstract that it
cannot have any specific instances. Such a class
is called an abstract class.

COP 3330: Classes In Java – Part 3 Page 3 © Mark Llewellyn

Abstract Classes
• Recall our GeometricObject class that was

the superclass for Circle and Rectangle.

• The GeometricObject class models
common features of geometric objects.

• Both the Circle and Rectangle classes
contain the getArea() and
getPerimeter() methods for computing the
area and perimeter of a circle and a rectangle.

COP 3330: Classes In Java – Part 3 Page 4 © Mark Llewellyn

public class Rectangle extends GeometricObject {
private double width;
private double height;
public Rectangle() {
}
public Rectangle(double width, double height) {

this.width = width;
this.height = height;

}
/** Return width */
public double getWidth() {

return width;
}
/** Set a new width */
public void setWidth(double width) {

this.width = width;
}
/** Return height */
public double getHeight() {

return height;
}
/** Set a new height */
public void setHeight(double height) {

this.height = height;
}
/** Return area */
public double getArea() {

return width * height;
}
/** Return perimeter */
public double getPerimeter() {

return 2 * (width + height);
}

}

The original Rectangle class

COP 3330: Classes In Java – Part 3 Page 5 © Mark Llewellyn

public class Circle extends GeometricObject {
private double radius;
public Circle() {
}
public Circle(double radius) {

this.radius = radius;
}
/** Return radius */
public double getRadius() {

return radius;
}
/** Set a new radius */
public void setRadius(double radius) {

this.radius = radius;
}
/** Return diameter */
public double getDiameter() {

return 2 * radius;
}
/** Return area */
public double getArea() {

return radius * radius * Math.PI;
}
/** Return perimeter */
public double getPerimeter() {

return 2 * radius * Math.PI;
}
/* Print the circle info */
public void printCircle() {

System.out.println("The circle is created " + getDateCreated() +
" and the radius is " + radius);

}
}

The original Circle class

COP 3330: Classes In Java – Part 3 Page 6 © Mark Llewellyn

Abstract Classes

• However, our earlier design was somewhat
lacking in that you can compute the area and
perimeter of all geometric objects, hence these
are not properties of circles or rectangles, but of
geometric objects.

• A better design would be to declare the
getArea() and getPerimeter() methods
in the GeometricObject class. But there is
a problem doing this. What is the problem?

COP 3330: Classes In Java – Part 3 Page 7 © Mark Llewellyn

Abstract Classes
• The problem is that in the GeometricObject

class we can’t provide an implementation for
these methods because their implementation
depends on the specific type of geometric object.
– To compute the area of a circle we need to use the

expression perimeter = 2πr, but for a rectangle
the expression is perimeter =
2(height+width).

• In order to define these methods in the
GeometricObject class, they need to be defined
as abstract methods.

COP 3330: Classes In Java – Part 3 Page 8 © Mark Llewellyn

Abstract Classes
• An abstract method is specified using the abstract modifier in

the method header.
– Example:

public abstract double getArea();

• Similarly, an abstract class is denoted using the abstract
modifier in the class header.
– Example:

– public abstract class GeometricObject { . . . }

• In UML notation, the names of abstract classes and their methods
are italicized (see pages 9-10 of Introduction to Object-Oriented
Programming - Part 3 Notes).

COP 3330: Classes In Java – Part 3 Page 9 © Mark Llewellyn

Abstract Classes
• Abstract classes are like regular classes with data fields and

methods, but you cannot create instances of abstract classes using
the new operator.

• An abstract method is a method signature without
implementation. Its implementation is provided by the
subclasses.

• Any class that contains an abstract method must be declared
abstract.

• The constructor of an abstract class is declared protected,
because it is used only by subclasses. When you create an
instance of a concrete subclass, the subclass’s parent class
constructor is invoked to initialize data fields in the parent class.

• Let’s now reconsider the GeometricObject case and redesign it
using abstract classes and methods.

COP 3330: Classes In Java – Part 3 Page 10 © Mark Llewellyn

Rectangle

− width: double
− height: double

+ Rectangle()
+ Rectangle(width: double, height: double)
+ getWidth(): double
+ setWidth(width: double): void
+ getHeigth(): double
+ setHeight(height: double): void
+ getArea(): double
+ getPerimeter(): double

Circle
− radius: double

+ Circle()
+ Circle(radius: double)
+ getRadius(): double
+ setRadius(radius: double): void
+ getArea(): double
+ getPerimeter(): double
+ getDiameter(): double
+ printCircle(): void

GeometricObject

− color: String
− filled: boolean
− dateCreated: java.util.Date

+ GeometricObject()
+ getColor(): String
+ setColor(color: String): void
+ isFilled(): boolean
+ setFilled(filled: boolean): void
+ getDateCreated(): java.util.Date
+ toString(): String

The original UML
diagram for the

GeometricObject
hierarchy

COP 3330: Classes In Java – Part 3 Page 11 © Mark Llewellyn

Rectangle

− width: double
− height: double

+ Rectangle()
+ Rectangle(width: double, height: double)
+ getWidth(): double
+ setWidth(width: double): void
+ getHeigth(): double
+ setHeight(height: double): void

Circle

− radius: double

+ Circle()
+ Circle(radius: double)
+ getRadius(): double
+ setRadius(radius: double): void
+ getDiameter(): double
+ printCircle(): void

GeometricObject

− color: String
− filled: boolean
− dateCreated: java.util.Date

GeometricObject()
+ getColor(): String
+ setColor(color: String): void
+ isFilled(): boolean
+ setFilled(filled: boolean): void
+ getDateCreated(): java.util.Date
+ toString(): String
+ getArea(): double
+ getPerimeter(): double

The new UML
diagram for the

GeometricObject
hierarchy using an
abstract class and

methods
Abstract methods

Abstract class

Methods
getArea and
getPerimeter
are overridden in
Circle and
Rectangle.
Overridden
methods are
generally omitted
in the UML for
subclasses.

COP 3330: Classes In Java – Part 3 Page 12 © Mark Llewellyn

Abstract Classes
• Now let’s re-write the GeometricObject

class using abstract methods which will convert
it into an abstract class.

• What changes will we need to make to the
Circle and Rectangle classes?

• Answer: Absolutely nothing! We will need to
provide implementations for the getArea and
getPerimeter methods in both classes, but they
already have them (thus they override the ones
defined in the GeometricObject class!)

COP 3330: Classes In Java – Part 3 Page 13 © Mark Llewellyn

public abstract class GeometricObject {
private String color = "white";
private boolean filled;
private java.util.Date dateCreated;

/** Construct a default geometric object */
protected GeometricObject() {

dateCreated = new java.util.Date();
}

/** Return color */
public String getColor() {

return color;
}

/** Set a new color */
public void setColor(String color) {

this.color = color;
}

/** Return filled. Since filled is boolean,
* so, the get method name is isFilled */
public boolean isFilled() {

return filled;
}

/** Set a new filled */
public void setFilled(boolean filled) {

this.filled = filled;
}

Declare class as abstract

Denote constructor as protected

COP 3330: Classes In Java – Part 3 Page 14 © Mark Llewellyn

/** Get dateCreated */
public java.util.Date getDateCreated() {

return dateCreated;
}

/** Return a string representation of this object */
public String toString() {

return "created on " + dateCreated + "\ncolor: " + color +
" and filled: " + filled;

}

/** Abstract method getArea */
public abstract double getArea();

/** Abstract method getPerimeter */
public abstract double getPerimeter();

}

Declare abstract method getArea()

Declare abstract method getPerimeter()

COP 3330: Classes In Java – Part 3 Page 15 © Mark Llewellyn

Abstract Classes
• Now let’s write a class to test the abstract version of the
GeometricObject class.

• We’ll use the example to illustrate not only how
abstract classes work, but also illustrate the advantages
of using abstract classes.

• Notice that if the methods getArea and
getPerimeter where only defined in the Circle
and Rectangle classes and not in the
GeometricObject class, we would not be able to
define the equalArea and displayObject
methods shown in this example.

COP 3330: Classes In Java – Part 3 Page 16 © Mark Llewellyn

public class TestGeometricObject {
/** Main method */
public static void main(String[] args) {
// Declare and initialize two geometric objects
GeometricObject geoObject1 = new Circle(5); //implicit casting
GeometricObject geoObject2 = new Rectangle(5, 3); //implicit casting

System.out.println("The two objects have the same area? " +
equalArea(geoObject1, geoObject2));

// Display circle
displayGeometricObject(geoObject1);

// Display rectangle
displayGeometricObject(geoObject2);

}
/** A method for comparing the areas of two geometric objects */
public static boolean equalArea(GeometricObject object1,

GeometricObject object2) {
return object1.getArea() == object2.getArea();

}
/** A method for displaying a geometric object */
public static void displayGeometricObject(GeometricObject object) {
System.out.println();
System.out.println("The area is " + object.getArea());
System.out.println("The perimeter is " + object.getPerimeter());

}
}

COP 3330: Classes In Java – Part 3 Page 17 © Mark Llewellyn

COP 3330: Classes In Java – Part 3 Page 18 © Mark Llewellyn

Interesting Points On Abstract Classes
• An abstract method cannot be contained in a

nonabstract class. If a subclass of an abstract superclass
does not implement all the abstract methods, the
subclass must also be declared abstract. In other words,
in a nonabstract subclass extended from an abstract
class, all the abstract methods must be implemented,
even if they are not used in the subclass.

• Abstract methods cannot be static.
• An abstract class cannot be instantiated using the new

operator, but you can still define its constructors, which
are invoked in the constructors of its subclasses. For
example, the constructors of GeometricObject are
invoked in the Circle and Rectangle classes.

COP 3330: Classes In Java – Part 3 Page 19 © Mark Llewellyn

Interesting Points On Abstract Classes
• A class that contains any abstract methods, must be declared as

abstract. However, it is possible to declare an abstract class that
contains no abstract methods! In this case, you cannot create
instances of the class using the new operator. This class would
be used as a base class for defining a new subclass only.

• A subclass can be abstract even if its superclass is concrete. For
example, the Object class is concrete, but its subclasses, such
as GeometricObject, may be abstract.

• A subclass can override a method from its superclass to declare it
abstract. This is very unusual, but is useful when the
implementation of the method in the superclass becomes invalid
in the subclass. In this case, the subclass must be declared
abstract.

COP 3330: Classes In Java – Part 3 Page 20 © Mark Llewellyn

More On Accessibility Modifiers
• So far this semester, we’ve mostly used public and
private accessibility modifiers for our class variables
and methods. With the introduction of abstract classes,
we now need to expand this to include the protected
modifier.

• A protected data or protected method in a public class
can be accessed by any class in the same package or its
subclasses, even if the subclasses are in different
packages.

• The accessibility modifiers are summarized in the table
on the next page.

COP 3330: Classes In Java – Part 3 Page 21 © Mark Llewellyn

More On Accessibility Modifiers

yesyesyesyespublic

nononoyesprivate

nonoyesyes(default)

noyesyesyesprotected

Access from a
different
package

Access from a
subclass

Access from
the same
package

Access from
the same

class

Modifier on
members in a

class

COP 3330: Classes In Java – Part 3 Page 22 © Mark Llewellyn

public class C1{
public int x;
protected int y;
int z;
private int u;

protected void m() { }
}

package p1:

public class C2{
C1 o = new C1();
can access o.x;
can access o.y;
can access o.z;
cannot access o.u;

can invoke o.m();
}

public class C3
extends C1{

can access x;
can access y;
can access z;
cannot access u;

can invoke m();
}

public class C4
extends C1{

can access x;
can access y;
cannot access z;
cannot access u;

can invoke m();
}

public class C5{
C1 o = new C1();
can access o.x;
cannot access o.y;
cannot access o.z;
cannot access o.u;

cannot invoke o.m();
}

package p2:

COP 3330: Classes In Java – Part 3 Page 23 © Mark Llewellyn

More On Accessibility Modifiers
• Use the private modifier to hide members of a class

completely so that they cannot be accessed directly
from outside the class.

• Use no modifiers (default case) in order to allow the
members of the class to be accessed directly from any
class within the same package but not from other
packages.

• Use the protected modifier to enable the members
of the class to be accessed by the subclasses in any
package or classes in the same package.

• Use the public modifier to enable the members of the
class to be accessed by any class.

COP 3330: Classes In Java – Part 3 Page 24 © Mark Llewellyn

More On Accessibility Modifiers
• A class can be used in two ways: for creating instances of the

class, and for creating subclasses by extending the class.
• Make the members private if they are not intended for use

from outside the class.
• Make the members public if they are intended for the users of

the class.
• Make the fields or methods protected if they are intended for

the extenders of the class, but not the users of the class.
• The private and protected modifiers can be used only for

members of the class. The public modifier and the default
modifier (i.e. no modifier) can be used on members of the class
as well as on the class itself. A class with no modifier (i.e., not a
public class) is not accessible by classes from other packages.

COP 3330: Classes In Java – Part 3 Page 25 © Mark Llewellyn

More On Accessibility Modifiers

• One additional note – a subclass may override a
protected method in its superclass and
change its visibility to public. However, a
subclass cannot weaken the accessibility of a
method defined in the superclass.

• For example, if a method is defined as public
in the superclass, it must be defined as public
in the subclass.

COP 3330: Classes In Java – Part 3 Page 26 © Mark Llewellyn

Preventing Extending and Overriding

• Sometimes you may want to prevent classes
from being extended. In such cases, use the
final modifier to indicate that a class is final
and thus cannot be a parent class.

– In Java, the Math class and the String class (among
others) are defined as final meaning that you cannot
extend the class.

• You can also define a method to be final, a final
method cannot be overridden by its subclasses.

