Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu

HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3330/sum2008

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3330: Classes In Java — Part 3 Page 1 © Mark Llewellyn

S

and less specific.

1s called an abstract class.

Abstract Classes

COP 3330: Classes In Java — Part 3 Page 2

© Mark Llewellyn

* In the inheritance hierarchy, classes become
more specific and concrete with each new
subclass. If you move from a subclass back up
to a superclass, the classes become more general

* Class design should ensure that a superclass
contains common features of 1ts subclasses.

 Sometimes a superclass 1s so abstract that it
cannot have any specific instances. Such a class

(I|

Abstract Classes

* Recall our GeometricObject class that was
the superclass for Circle and Rectangle.

« The GeometricObject class models
common features of geometric objects.

« Both the Circle and Rectangle classes
contain the getArea() and
getPerimeter () methods for computing the

area and perimeter of a circle and a rectangle.

P
COP 3330: Classes In Java — Part 3 Page 3 © Mark Llewellyn g);

public class Rectangle extends GeometricObject {
private double width;
private double height;
public Rectangle() {
P _ _ The original Rectangle class
public Rectangle(double width, double height) {
this.width = width;
this_height = height;
by
/** Return width */
public double getWidth() {
return width;
by
/** Set a new width */
public void setWidth(double width) {
this.width = width;
by
/** Return height */
public double getHeight() {
return height;
by
/** Set a new height */
public void setHeight(double height) {
this_height = height;
:
//7 /** Return area */ ‘\\
public double getArea() {
return width * height;
¥
/** Return perimeter */
public double getPerimeter() {
return 2 * (width + height);

U /
——L
¢ .
COP 3330: Classes In Java — Part 3 Page 4 © Mark Llewellyn %}j

public class Circle extends GeometricObject {
private double radius;
public Circle() {
}]]]
public Circle(double radius) { The Orlgmal CIFC'G CIaSS
this.radius = radius;

}

/** Return radius */

public double getRadius() {
return radius;

}

/** Set a new radius */

public void setRadius(double radius) {
this.radius = radius;

}

/** Return diameter */

public double getDiameter() {
return 2 * radius;

ks

//7/** Return area */ ‘\\

public double getArea() {
return radius * radius * Math.Pi;

}

/** Return perimeter */
public double getPerimeter() {
return 2 * radius * Math.Pl;

}

public void printCircle() {
System.out.printIn(""The circle is created " + getDateCreated() +
'*and the radius is " + radius);

by
}——L
¢ .
COP 3330: Classes In Java — Part 3 Page 5 © Mark Llewellyn %}j

Abstract Classes

 However, our earlier design was somewhat
lacking 1n that you can compute the area and
perimeter of all geometric objects, hence these
are not properties of circles or rectangles, but of
geometric objects.

* A better design would be to declare the
getArea() and getPerimeter () methods

in the GeometricObject class. But there is
a problem doing this. What 1s the problem?

P
COP 3330: Classes In Java — Part 3 Page 6 © Mark Llewellyn g);

Abstract Classes

» The problem is that in the GeometricObject
class we can’t provide an implementation for
these methods because theirr i1mplementation
depends on the specific type of geometric object.

— To compute the area of a circle we need to use the
expression perimeter = 2nur, but for a rectangle

the expression is perimeter =
2(height+width).

* In order to define these methods 1n the
GeometricObject class, they need to be defined
as abstract methods.

(o)
COP 3330: Classes In Java — Part 3 Page 7 © Mark Llewellyn g);

Abstract Classes

» An abstract method is specified using the abstract modifier in

the method header.

— Example:

public abstract double getArea();

Similarly, an abstract class is denoted using the abstract
modifier in the class header.

— Example:

— public abstract class GeometricObject { . . . }

In UML notation, the names of abstract classes and their methods
are 1talicized (see pages 9-10 of Introduction to Object-Oriented
Programming - Part 3 Notes).

P
COP 3330: Classes In Java — Part 3 Page 8 © Mark Llewellyn §_ﬁ

Abstract Classes

Abstract classes are like regular classes with data fields and
methods, but you cannot create instances of abstract classes using
the new operator.

An abstract method 1s a method signature without
implementation. Its 1mplementation 1s provided by the
subclasses.

Any class that contains an abstract method must be declared
abstract.

The constructor of an abstract class 1s declared protected,
because i1t 1s used only by subclasses. When you create an
instance of a concrete subclass, the subclass’s parent class
constructor 1s invoked to 1nitialize data fields in the parent class.

Let’s now reconsider the GeometricObject case and redesign 1t
using abstract classes and methods.

(o)
COP 3330: Classes In Java — Part 3 Page 9 © Mark Llewellyn g);

GeometricObject

- color: String
- filled: boolean
- dateCreated: java.util.Date

The original UML
diagram for the

+ GeometricObject()

+ getColor(): String

+ setColor(color: String): void

+ isFilled(): boolean

+ setFilled(filled: boolean): void

+ getDateCreated(): java.util.Date
+ toString(): String

GeometricObject
hierarchy

JZAN

Circle

Rectangle

- radius: double

+ Circle()

— width: double
- height: double

+ Circle(radius: double)

+ getRadius(): double

+ setRadius(radius: double): void
+ getArea(): double

+ getPerimeter(): double

+ getDiameter(): double

+ printCircle(): void

+ Rectangle()

+ Rectangle(width: double, height: double)
+ getWidth(): double

+ setWidth(width: double): void

+ getHeigth(): double

+ setHeight(height: double): void

+ getArea(): double

+ getPerimeter(): double

e ——————

COP 3330: Classes In Java — Part 3 Page 10 © Mark Llewellyn

Abstract class

— GeometricObject

- color: String
- filled: boolean
- dateCreated: java.util.Date

The new UML
diagram for the

Abstract methods

GeometricObject()

+ getColor(): String

+ setColor(color: String): void
+ isFilled(): boolean

GeometricObject
hierarchy using an
abstract class and

- radius: double

+ Circle()
+ Circle(radius: double)
+ getRadius(): double

+ getDiameter(): double
+ printCircle(): void

+ setRadius(radius: double):

+ setFilled(filled: boolean): void
+ getDateCreated(): java.util.Date methods
+ toString(): String
b+ getArea(): double
+ getPerimeter(): double
JZAN
[I
Circle v . Rectangle
~ e
Methods . ~ width: double
SEUAIEE Bl ~ height: double
getPerimeter
are overridden in
Circle and + Rectangle()
Rectangle. + Rectangle(width: double, height: double)
vol methods are + setWidth(width: double): void
generally omitted + getHeigth(): double
in the UML for + setHeight(height: double): void
subclasses.

COP 3330: Classes In Java — Part 3

Page 11

© Mark Llewellyn

Abstract Classes

 Now let’s re-write the GeometricObject

class using abstract methods which will convert
it into an abstract class.

 What changes will we need to make to the
Circle and Rectangle classes?

* Answer: Absolutely nothing! We will need to
provide implementations for the getArea and
getPerimeter methods in both classes, but they

already have them (thus they override the ones
defined in the GeometricObject class!)

P
COP 3330: Classes In Java — Part 3 Page 12 © Mark Llewellyn g);

publ ic abstrac_:t class Geometl_’icObj ect { < Declare class as abstract
private String color = "white";
private boolean filled;
private java.util._Date dateCreated;

/** Construct a default geometric object */

protected GeometricObject() { < Denote constructor as protected
dateCreated = new java.util_Date();

by

/** Return color */
public String getColor() {
return color;

}

/** Set a new color */
public void setColor(String color) {
this.color = color;

by

/** Return filled. Since filled is boolean,
* so, the get method name is isFilled */
public boolean isFilled() {
return filled;

}

/** Set a new filled */
public void setFilled(boolean filled) {
this.filled = filled;

}

—ﬂ
COP 3330: Classes In Java — Part 3 Page 13 © Mark Llewellyn %}j

/** Get dateCreated */

public java.util.Date getDateCreated() {
return dateCreated;

¥

/** Return a string representation of this object */

public String toString() {
return ''created on "
"and filled: "™ + filled;

}

/** Abstract method getArea */

+ dateCreated + '"\ncolor: "

+ color +

public abstract double getArea(); <

/** Abstract method getPerimeter */

Declare abstract method getArea()

public abstract double getPerimeter(); <

Declare abstract method getPerimeter()

COP 3330: Classes In Java — Part 3

Page 14 © Mark Llewellyn

Abstract Classes

« Now let’s write a class to test the abstract version of the
GeometricObject class.

« We’ll use the example to i1llustrate not only how
abstract classes work, but also 1llustrate the advantages
of using abstract classes.

 Notice that 1f the methods getArea and
getPerimeter where only defined in the Circle
and Rectangle classes and not in the
GeometricObject class, we would not be able to
define the equalArea and displayObject
methods shown 1n this example.

P
COP 3330: Classes In Java — Part 3 Page 15 © Mark Llewellyn g);

public class TestGeometricObject {

}

/** Main method */

public static void main(String[] args) {
// Declare and i1nitialize two geometric objects
GeometricObject geoObjectl = new Circle(5); //implicit casting
GeometricObject geoObject2 new Rectangle(5, 3); //implicit casting

System.out.printIn(""The two objects have the same area? " +
equalArea(geoObjectl, geoObject2));

// Display circle

displayGeometricObject(geoObjectl);

// Display rectangle
displayGeometricObject(geoObject?);
+
/** A method for comparing the areas of two geometric objects */
public static boolean equalArea(GeometricObject objectl,
GeometricObject object2) {
return objectl.getArea() == object2.getArea();
+
/** A method for displaying a geometric object */
public static void displayGeometricObject(GeometricObject object) {
System.out.printin();
System.out.printIn(""The area is " + object.getArea());
System.out.printIn(*The perimeter i1s " + object.getPerimeter());

}

COP 3330: Classes In Java — Part 3 Page 16 © Mark Llewellyn

& Java - Geometric Objects/TestGeometricObject. java - Eclipse Platform

File Edt Source Refactor Mavigate Search Project Run Meindow Help

: 9~ @iﬁ'ﬂ'%' @@@'@E“ﬁj|_‘5|i ﬁﬁDEhUGﬁJJavﬂ
IIJ}I - gl}l - :t;lj cG:] -
% Package Explo & 'E: Herarchy| = 3| [J] TestGeometricObiect, 52 . 1t = O [TaskList &2 =0
: {:% r bl I i) A 5 D |} :_ -
¢ HS e - E: Outling &5 =0
Tﬁl- Assignment Cne A
I-L;—E-I- Bike Shop - Assignment Two E_g Problems | @ Javadac @, Declaration | Bl Cansale 2 = 0
0| —
= BMI <kerminated > TestGeometricObj ication] E: = o
ject [Java Application] E:\Pro 2 T = .
E;I-C.alendar X % o EE|E|E - L
TE'“I-CnmputeLnan The two objects have the same area? false

E}I'Examl g

I-j'-ExamlFlewiew Problems The area 15 78.5393163359744383

Tﬁl’ Everrise 531 The perimeter iz 31.41592653553733
= I:'.?I' Geometric Objects
=-H {default package) The area 1z 13.0

[J] AbstractGeometricObject.jave || 1R Perimeter is 16.0
m Circle java

F- 11 Rertanle.iava b
{ | L&

ki "Writable Smart Insert | 302

5 i

COP 3330: Classes In Java — Part 3 Page 17 © Mark Llewellyn

Interesting Points On Abstract Classes

 An abstract method cannot be contained 1n a
nonabstract class. If a subclass of an abstract superclass
does not implement all the abstract methods, the
subclass must also be declared abstract. In other words,
in a nonabstract subclass extended from an abstract
class, all the abstract methods must be implemented,
even 1f they are not used in the subclass.

 Abstract methods cannot be static.

* An abstract class cannot be instantiated using the new

operator, but you can still define its constructors, which

are invoked in the constructors of its subclasses. For
example, the constructors of GeometricObject are

invoked in the Circle and Rectangle classes.

P
COP 3330: Classes In Java — Part 3 Page 18 © Mark Llewellyn g);

Interesting Points On Abstract Classes

* A class that contains any abstract methods, must be declared as
abstract. However, 1t 1s possible to declare an abstract class that
contains no abstract methods! In this case, you cannot create
instances of the class using the new operator. This class would

be used as a base class for defining a new subclass only.

* A subclass can be abstract even if its superclass is concrete. For
example, the Object class is concrete, but its subclasses, such
as GeometricObject, may be abstract.

* A subclass can override a method from 1ts superclass to declare it
abstract. This 1s very unusual, but 1s useful when the
implementation of the method in the superclass becomes invalid
in the subclass. In this case, the subclass must be declared
abstract.

”
COP 3330: Classes In Java — Part 3 Page 19 © Mark Llewellyn g);

More On Accessibility Modifiers

* So far this semester, we’ve mostly used publ1c and
private accessibility modifiers for our class variables

and methods. With the introduction of abstract classes,
we now need to expand this to include the protected

modifier.

* A protected data or protected method in a public class
can be accessed by any class 1in the same package or its
subclasses, even 1f the subclasses are 1n different

packages.

* The accessibility modifiers are summarized in the table

on the next page.

COP 3330: Classes In Java — Part 3

Page 20

© Mark Llewellyn

|

More On Accessibility Modifiers

Modifier on Access from Access from | Access from a | Access from a
members in a the same the same subclass different
class class package package
public yes yes yes yes
protected yes
(default) yes
private yes

COP 3330: Classes In Java — Part 3

Page 21

© Mark Llewellyn

package pl:

public class C1{
public Int X;
protected iInt y;
int z;
private int u;

protected void m(Q) { }

AN

public class C2{
Cl o = new C1(Q);
can access 0.X;
can access 0.Y;
can access 0.z;
cannot access 0.U;

can 1nvoke o.m();

public class C3
extends C1{
can access X;
can access Yy;
can access z;
cannot access Uu;

can invoke m(Q);

package p2:

public class C4
extends C1{
can access X;
can access Yy;
cannot access z;
cannot access Uu;

can invoke m();

public class C5{
Cl o = new C1(Q);
can access 0.X

cannot access
cannot access
cannot access

cannot invoke

COP 3330: Classes In Java — Part 3

Page 22

© Mark Llewellyn

More On Accessibility Modifiers

Use the private modifier to hide members of a class

completely so that they cannot be accessed directly
from outside the class.

Use no modifiers (default case) in order to allow the
members of the class to be accessed directly from any
class within the same package but not from other
packages.

Use the protected modifier to enable the members

of the class to be accessed by the subclasses 1n any
package or classes 1n the same package.

Use the publ 1c modifier to enable the members of the
class to be accessed by any class.

P
COP 3330: Classes In Java — Part 3 Page 23 © Mark Llewellyn g);

More On Accessibility Modifiers

A class can be used in two ways: for creating instances of the

class, and for creating subclasses by extending the class.

Make the members private if they are not intended for use

from outside the class.

Make the members publ i c if they are intended for the users of

the class.

Make the fields or methods protected if they are intended for

the extenders of the class, but not the users of the class.

The private and protected modifiers can be used only for
members of the class. The public modifier and the default
modifier (1.e. no modifier) can be used on members of the class
as well as on the class itself. A class with no modifier (1.e., not a

public class) 1s not accessible by classes from other packages.

COP 3330: Classes In Java — Part 3 Page 24 © Mark Llewellyn

(I|

More On Accessibility Modifiers

* One additional note — a subclass may override a
protected method in its superclass and

change 1its wvisibility to public. However, a
subclass cannot weaken the accessibility of a
method defined 1n the superclass.

» For example, if a method is defined as public
in the superclass, it must be defined as public

in the subclass.

”
COP 3330: Classes In Java — Part 3 Page 25 © Mark Llewellyn g);

Preventing Extending and Overriding

 Sometimes you may want to prevent classes
from being extended. In such cases, use the
final modifier to indicate that a class 1s final

and thus cannot be a parent class.

— In Java, the Math class and the String class (among
others) are defined as final meaning that you cannot
extend the class.

* You can also define a method to be final, a final
method cannot be overridden by its subclasses.

”
COP 3330: Classes In Java — Part 3 Page 26 © Mark Llewellyn g);

