
COP 3330: Exception Handling Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

Exception Handing in Java – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: Exception Handling Page 2 © Mark Llewellyn

Exception Handling in Java

• An exception is an abnormal event that occurs during
program execution.

– attempt to manipulate a nonexistent file.

– improper array subscripting.

– improper arithmetic operations such as divide by zero.

• If an exception occurs and an exception-handler code
segment is in effect for that exception, then flow of control
is transferred to the handler.

• If an exception occurs and there is no handler for it, the
program terminates.

COP 3330: Exception Handling Page 3 © Mark Llewellyn

Exception Handling in Java (cont.)
import java.io.*;
public class except_A {

public static void main (String[] args) throws IOException {
//get filename
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));
System.out.println(“Filename: “);
String s = stdin.readLine();
//set up file stream for processing
BufferedReader filein = new BufferedReader(new FileReader(s));
//extract values and perform calculation
int numerator = Integer.parseInt(filein.readLine());
int denominator = Integer.parseInt(filein.readLine());
int quotient = numerator / denominator;
System.out.println();
System.out.println(numerator + “ / “ + denominator + “ = “ +

quotient);
return;

}
}

COP 3330: Exception Handling Page 4 © Mark Llewellyn

Exception Handling in Java (cont.)

• There is a throws expression in the main method
signature for class except_A shown in the
previous slide.

– All of the interactive console application programs that
have appeared in the notes this semester have included
throws expressions in their main method signatures.

• Java requires the throws expression for any
method that does not handle the I/O exceptions
that it may generate.

COP 3330: Exception Handling Page 5 © Mark Llewellyn

Exception Handling in Java (cont.)

• The inclusion of the throws expression is a
warning to users of the method. Such knowledge
is important because if an invoked method does
not handle an exception, then the exception is
given to the invoking method to handle.

– If the invoking method does not handle the exception,
then the unwinding process continues with the method
that did the invoking of the invoking method, and so
on. If no method is found in the unwinding process to
handle the exception, then the program terminates.

COP 3330: Exception Handling Page 6 © Mark Llewellyn

Exception Handling in Java (cont.)

• Suppose that program except_A is executed and the user
specifies the file to be the file named numbers.txt
containing the values 35 and 7 on successive lines. The
I/O behavior of the program is shown below.

User supplies a valid
filename causing the

quotient to be calculated
and displayed.

COP 3330: Exception Handling Page 7 © Mark Llewellyn

Exception Handling in Java (cont.)

• What happens when program except_A is
executed and the user specifies an invalid
file? Suppose the user misspells the name of
the original file as number.txt. The I/O
behavior of the program for this execution is
shown below.

Since the file number.txt
does not exist, it cannot
be opened for input
processing. The
BufferedReader
construction cannot
complete successfully.
Java throws an exception
of the type shown.

COP 3330: Exception Handling Page 8 © Mark Llewellyn

Exception Handling in Java (cont.)

• When an exception is thrown and not handled,
Java generates a message to the standard error
stream indicating where the exception occurred.

– By default, the standard error stream is the terminal
screen.

• When examining an exception message, it is
sometimes easier to start with the last line of the
message and work your way toward the first
message line. The last line indicates the start of
the process that caused the throwing of the
exception.

COP 3330: Exception Handling Page 9 © Mark Llewellyn

Exception Handling in Java (cont.)

Start here:
1. This line indicates that the exception was generated at line 10 in

except.A.main. This line defines a BufferedReader variable filein.
2. In creating the FileReader used by the BufferedReader constructor,a

FileInputStream was needed.
3. This FileInputStream used a method open() that interacted with the file

system. Because of the misspelled name, the file could not be opened.
4. The exception reporting this problem was generated and eventually

propagated to the main() method. Since main() did not handle this exception,
the program was terminated.

COP 3330: Exception Handling Page 10 © Mark Llewellyn

Exception Handling in Java (cont.)

• In the preceding example, the program did not end
gracefully. A user does not want to read the jargon of an
exception message.

• A better alternative is to used Java’s try-catch
mechanism.

• With this mechanism, code that deals with situations in
which exceptions can arise is put into a try block. If an
exception arises in a try block, Java will transfer control
to the appropriate exception handler to handle the problem.

– A try block is a statement block with the keyword try
preceding it.

COP 3330: Exception Handling Page 11 © Mark Llewellyn

Exception Handling in Java (cont.)

• The exception handlers are catch blocks and
they immediately follow the try block.

• A catch block is a statement block that begins
with the keyword catch followed by a single
parameter that specifies the type of exception to be
handled by the block.

• There is usually a catch handler for each type of
exception that can occur within the try block.

• The catch blocks are executed only if an
exception is generated.

COP 3330: Exception Handling Page 12 © Mark Llewellyn

Exception Handling in Java (cont.)

• General form of the try-catch mechanism:

try {Action} catch (ExceptionType Parameter) {Handler}

Block of code
that can
generate an
exception of
type
ExceptionType

Type of
exception to
be caught

If an
ExceptionType is
generated, then
Parameter is
initialized with
exception
information

Block of
code that
handles the
caught
exception

COP 3330: Exception Handling Page 13 © Mark Llewellyn

Exception Handling in Java (cont.)

• If an exception is thrown in a try block, then the
first associated catch block whose parameter type
matches the generated exception is used.

• If no catch block parameter matches the exception,
then the invocation process is unwound
automatically to find the appropriate exception
handler. The unwinding process is illustrated in
the next slide.

COP 3330: Exception Handling Page 14 © Mark Llewellyn

Exception Handling Process

Does invoked method have a catch
block for the exception?

Exception is generated

Does the invoking method have a
catch block for the exception?

Catch handler processes exception.
Execution continues with statement

following its try-catch construct.

NO

NO
Does the invoking method of the

invoking method have a catch block
for the exception?

NO

Does the method that initiated
program execution have a catch

block for the exception?

NO
...

Program is terminated and a
message is sent to the standard

error stream

NO

Catch handler processes exception.
Execution continues with statement

following its try-catch construct.

Catch handler processes exception.
Execution continues with statement

following its try-catch construct.

Catch handler processes exception.
Execution continues with statement

following its try-catch construct.

YES

YES

YES

YES

COP 3330: Exception Handling Page 15 © Mark Llewellyn

Exception Handling in Java (cont.)

• If a catch block is executed, then its parameter
is initialized with information regarding the
specifics of the exception.

• If the catch block does not end the program,
then after the catch block completes, program
execution continues with the statement following
the try-catch construct.

COP 3330: Exception Handling Page 16 © Mark Llewellyn

Exception Handling in Java (cont.)

• The following code segment appears in an upgraded
version of program except_A called except_B (
pages 17-18) and catches the exception generated by
an invalid filename.

//set up file stream for processing
BufferedReader filein = null;
try {

filein = new BufferedReader(new FileReader(s));
}
catch (FileNotFoundException e) {
System.err.println(s + “: cannot be opened for reading”);
System.exit(0);
}

Note: Variable filein is declared outside of the try-catch block.

COP 3330: Exception Handling Page 17 © Mark Llewellyn

Exception Handling in Java (cont.)

import java.io.*;

public class except_B {
public static void main (String[] args) throws IOException {

//get filename
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));
System.out.println(“Filename: “);
String s = stdin.readLine();
//set up file stream for processing
BufferedReader filein = null;
try {

filein = new BufferedReader(new FileReader(s));
}
catch (FileNotFoundException e) {

System.err.println(s + “: cannot be opened for reading”);
System.exit(0);

}

COP 3330: Exception Handling Page 18 © Mark Llewellyn

Exception Handling in Java (cont.)

//extract values and perform calculation
int numerator = Integer.parseInt(filein.readLine());
int denominator = Integer.parseInt(filein.readLine());
int quotient = numerator / denominator;
System.out.println();
System.out.println(numerator + “ / “ + denominator + “ = “ +

quotient);
return;

}
}

COP 3330: Exception Handling Page 19 © Mark Llewellyn

Exception Handling in Java (cont.)

• Suppose that program except_B is executed and the user
specifies the file to be the file named numbers.txt
containing the values 35 and 7 on successive lines. The
I/O behavior of the program is shown below.

User supplies a valid
filename causing the

quotient to be calculated
and displayed.

User enters an invalid filename
causing an exception which is
caught and handled.

COP 3330: Exception Handling Page 20 © Mark Llewellyn

Exception Handling in Java (cont.)

• Notice that in program except_B that the
main() method contains a throws expression
even though we have a try-catch construct for the
FileNotFoundException. WHY?

– Answer: It is still possible for the program to throw an
IOException. In particular any of the readLine()
invocations in the main method could generate an
IOException if there is a file-system failure.

COP 3330: Exception Handling Page 21 © Mark Llewellyn

Exception Handling in Java (cont.)

• To remove the necessity of have the throws
expression as part of the main method signature,
the readLine() invocations will need to be
within try blocks.

• Program except_C on the next page wraps the
readLine() invocations into two try blocks.
One for the readLine() invocation that is
reading the filename and the second for the
readLine() invocation that is reading in the
numerator and denominator from the file.

COP 3330: Exception Handling Page 22 © Mark Llewellyn

Program except_C.java
import java.io.*;

public class except_C {
public static void main (String[] args){

//get filename
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));
System.out.println(“Filename: “);
String s = null;
try {

s = stdin.readLine();
}
catch (IOException e){

System.err.println(“Cannot read input”);
System.exit(0);

}
//set up file stream for processing

BufferedReader filein = null;
try {

filein = new BufferedReader(new FileReader(s));
}

COP 3330: Exception Handling Page 23 © Mark Llewellyn

catch (FileNotFoundException e) {
System.err.println(s + “: cannot be opened for

reading”);
System.exit(0);

}

//extract values and perform calculation
try {

int numerator = Integer.parseInt(filein.readLine());
int denominator = Integer.parseInt(filein.readLine());
int quotient = numerator / denominator;
System.out.println();
System.out.println(numerator + “ / “ + denominator + “ = “

+ quotient);
}
catch (IOException e) {

System.err.println(s + “: unable to read values”);
System.exit(0);

}
return;

}
}

COP 3330: Exception Handling Page 24 © Mark Llewellyn

Output from except_C.java
• Suppose that program except_C is executed and the user

specifies the file to be the file named numbers.txt
containing the values 35 and 7 on successive lines.
However, if that file contains the values 35 and b, then
problems will occur as shown below.

User supplies a filename
containing valid data

causing the quotient to be
calculated and displayed.

User enters a filename containing
invalid data causing an exception
which is not caught.

COP 3330: Exception Handling Page 25 © Mark Llewellyn

Output from except_C.java (cont.)

• What would you expect to happen if program except_C
is executed and the user specifies a file named
numbers.txt containing only the value 35? Similarly,
what would you expect to happen if the file contained the
values 35 and 0? What happens is shown below.

User supplies a filename
containing only a single

integer value. Null is not
a reference to an integer.

User enters a filename
containing a denominator of
0 causing an arithmetic
exception which is not
caught.

COP 3330: Exception Handling Page 26 © Mark Llewellyn

Exception Handling in Java (cont.)

• The last three types of exceptions shown from executing
program except_C, namely the two
NumberFormatException and the one
ArithmeticException, are examples of runtime
exceptions.

• The superclass for all runtime exceptions is
java.lang.RunTimeException. Because
runtime exceptions can occur throughout a program and
because of the cost of implementing handlers for them
typically exceeds the expected benefit, Java makes it
optional to catch them or to specify that it throws them.

COP 3330: Exception Handling Page 27 © Mark Llewellyn

Exception Handling in Java (cont.)

• Because runtime exceptions need not be caught,
they are also known as unchecked exceptions.

• All other exceptions are known as checked
exceptions. The checked exceptions that a method
may generate must either be caught by one of its
exception handlers or listed in the throws
expression of the method.

• Program except_D (next three pages) adds
exception handlers for these three additional
exceptions.

COP 3330: Exception Handling Page 28 © Mark Llewellyn

Program except_D.java
import java.io.*;

public class except_D {
public static void main (String[] args){

//get filename
BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));
System.out.println(“Filename: “);
String s = null;
try {

s = stdin.readLine();
}
catch (IOException e){

System.err.println(“Cannot read input”);
System.exit(0);

}
//set up file stream for processing

BufferedReader filein = null;
try {

filein = new BufferedReader(new FileReader(s));
}

COP 3330: Exception Handling Page 29 © Mark Llewellyn

catch (FileNotFoundException e) {
System.err.println(s + “: cannot be opened for reading”);
System.exit(0);

}
//extract values and perform calculation
try {

int numerator = Integer.parseInt(filein.readLine());
int denominator = Integer.parseInt(filein.readLine());
int quotient = numerator / denominator;
System.out.println();
System.out.println(numerator + “ / “ + denominator + “ = “

+ quotient);
}
catch (IOException e) {

System.err.println(s + “: unable to read values”);
System.exit(0);

}
catch (NumberFormatException e) {

if (e.getMessage().equals(“null”)) {
System.err.println(s + “ : doesn’t contain two inputs”);

}
else {

System.err.println(s + “ :contains nonnumeric inputs”);
}
System.exit(0);

}

COP 3330: Exception Handling Page 30 © Mark Llewellyn

catch (ArithmeticException e) {
System.err.println(s + “ : unexpected 0 input value”);
System.exit(0);

}

return;
}

}

COP 3330: Exception Handling Page 31 © Mark Llewellyn

Output from except_D.java
• Using the same input files as before, the output from

except_D is shown below:
User enters a filename
containing a nonnumeric
value. This exception is now
caught.

User supplies a filename
containing only a single
integer value. This
exception is now caught.

User enters a filename
containing a denominator of
0 causing an arithmetic
exception which is now
caught.

COP 3330: Exception Handling Page 32 © Mark Llewellyn

Exception Handling in Java (cont.)

• For the particular problem that we have been using as an
example, the handling of runtime exceptions makes sense
because well-crafted programs ensure the validity of their
input.

• Program except_D ensures that the input is valid by
adding two more catch blocks to the try block for
computing the quotient.
– To handle the NumberFormatException the handler tests the

return value of Exception instance method getMessage().
This method returns a String message indicating why the
exception was thrown. Class method Integer.parseInt()
throws an exception with message “null” only if its actual
parameter has value null. Thus, the
e.getMessage().equals (“null”) test is sufficient for
determining why the exception was generated.

COP 3330: Exception Handling Page 33 © Mark Llewellyn

Why Handle Exceptions

• Although Java’s exception handling mechanism sometimes
appears excessive, the mechanism is necessary if programs
are to follow the object-oriented paradigm.

• For example, suppose an error occurred within a method
f() that was invoked by a method g() that was in turn
invoked by a method h(). Suppose further that to correct
the error, method h() that initiated this invocation
sequence must regain the flow of control. Without the
exception-handling mechanism there would be no way to
unwind the method invocations to enable corrective action
to take place at the true problem source.

COP 3330: Exception Handling Page 34 © Mark Llewellyn

Finally – the last word in exception handling

• Although it is not strictly necessary, Java provides a syntax
for an exception handler block that is always executed after
the try block or catch handler have completed their
tasks. This special handler is introduced through the
keyword finally.

• The following program uses a finally handler. This
program displays to standard output the contents of the
files whose names are given to the program as command-
line parameters.

– The program Display.java mimics the operation of the Windows
command type and the Unix/Linux command cat.

COP 3330: Exception Handling Page 35 © Mark Llewellyn

Program Display.java
//This program mimics OS commands like type and cat
import java.io.*;
public class Display {

public static void main (String[] args){
//each command line parameter is treated as a filename
//whose contents will be displayed to the standard output.
for (int i = 0; i < args.length; ++i) {

//open input stream reader associated with i-th file parameter
try {

BufferedReader filein = new BufferedReader(
new FileReader(args[i]));

//args[i] is a readable filename
try {

String s = filein.readLine();
while (s != null) {

System.out.println(s);
s = filein.readLine();

}
}
catch (IOException e){

System.err.println(args[i] + “: processing error”);
}

COP 3330: Exception Handling Page 36 © Mark Llewellyn

finally {
try {

filein.close();
}
catch (IOException e) {

System.err.println(args[i] + “: system error”);
}

}
}
catch (FileNotFoundException e){

//args[i] is not a valid filename
System.err.println(args[i] + “: cannot be opened”);

}
}

}
}

The invocation close() generates an
IOException if there is a file-system
problem, so the close() is embedded
within its own try-catch construct.

COP 3330: Exception Handling Page 37 © Mark Llewellyn

Output from Display.java
• Display.java acts like OS commands cat and
type. Its command line arguments are opened and
printed.

User supplies a valid
filename. The file is
opened and its contents
are printed.

User enters two valid
filenames. Both files are
opened and their contents
printed.

User enters three
filenames. First two are
valid and the third one is
invalid (it does not exist).

COP 3330: Exception Handling Page 38 © Mark Llewellyn

Creating and Throwing Exceptions
• The keyword throw has two uses in Java. So far we have

used it to head a try block. Its other use is in signaling an
exception.

• A statement of the form: throw exception; is an
exception throwing statement, where exception
specifies the necessary exception information.

• In the next example, we’ll return to the banking example
that we used earlier in the term to create a BankAccount
class which will throw a NegativeAmountException
if there is an attempt to make a balance negative, deposit a
negative amount, or withdraw a negative amount.

COP 3330: Exception Handling Page 39 © Mark Llewellyn

Creating and Throwing Exceptions (cont.)

• Since NegativeAmountException is not a built-
in exception in Java, we will need to create the class
NegativeAmountException.

• Class BankAccount supports two constructors: a
default constructor to create a new bank account with
an empty balance and an overloaded constructor
which creates a new bank account with a positive
balance.

• The overloaded constructor will throw a
NegativeAccountBalance if an attempt is made
to create an account with a negative initial balance.

COP 3330: Exception Handling Page 40 © Mark Llewellyn

Creating an Exception Class
• Class NegativeAmountException is a specialized

exception class for indicating abnormal bank account
manipulation. The behavior that we want from this
exception is just the normal exception behavior, (e.g.,
using inherited method getMessage() to query an
exception regarding its message).

public NegativeAmountException(String s)

• The definition of the NegativeAmountException
constructor is straightforward. It simply invokes the
constructor of its superclass Exception with s as the
message for the new exception.

COP 3330: Exception Handling Page 41 © Mark Llewellyn

Creating an Exception Class

//represents an abnormal bank account event
public class NegativeAmountException extends Exception{

//NegativeAmountException():creates exception with message s
public NegativeAmountException(String s){

super(s);
}

}

COP 3330: Exception Handling Page 42 © Mark Llewellyn

BankAccount.java
//BankAccount represents a bank account balance
public class BankAccount {

//instance variable
int balance;
//BankAccount(): default constructor
public BankAccount() {
balance = 0;

}
//BankAccount(): overloaded specific constructor
public BankAccount(int n) throws NegativeAmountException {
if (n >= 0) {

balance = n;
}
else {

throw new NegativeAmountException(“Bad Balance”);
}

}

COP 3330: Exception Handling Page 43 © Mark Llewellyn

//getBalance(): return the current balance
public int getBalance() {

return balance;
}
//addFunds(): deposit amount n
public void addFunds(int n) throws NegativeAmountException {

if (n >=0) {
balance = += n;

}
else {

throw new NegativeAmountException(“Bad deposit”);
}

}

//removeFunds(): withdraw amount n
public void removeFunds(int n) throws NegativeAmountException {
if (n < 0) {

throw new NegativeAmountException(“Bad withdrawal”);
}
else if (balance < n) {

throw new NegativeAmountException(“Bad balance”);
}
else {

balance -= n;
}

}
}

COP 3330: Exception Handling Page 44 © Mark Llewellyn

Deposits.java
//Demonstrate the use of BankAccount and NegativeAmountException
import java.io.*;

public class Deposits {
//main(): application entry point
public static void main (String[] args)throws IOException,

NegativeAmountException {
BufferedReader stdin = new BufferedReader(new InputStreamReader

(System.in));
BankAccount savings = new BankAccount();
System.out.println(“Enter first deposit”);
int deposit = Integer.parseInt(stdin.readLine());
savings.addFunds(deposit);
System.out.println(“Enter second deposit”);
deposit = Integer.parseInt(stdin.readLine());
savings.addFunds(deposit);
System.out.println(“Closing balance: “ + savings.getBalance());

}
}

COP 3330: Exception Handling Page 45 © Mark Llewellyn

Output from Deposits.java

User supplies valid
amounts for deposits. No
exceptions are thrown.

User supplies a negative
deposit amount which

causes an exception to be
thrown

COP 3330: Exception Handling Page 46 © Mark Llewellyn

Modified_Deposits.java
//Demostrate the use of BankAccount and NegativeAmountException
//Illustrates two exceptions caused by withdrawals
import java.io.*;

public class Deposits2 {
//main(): application entry point
public static void main (String[] args)throws IOException,

NegativeAmountException {
BufferedReader stdin = new BufferedReader(new InputStreamReader

(System.in));
BankAccount savings = new BankAccount();
System.out.printl(“Enter deposit: ”);
int deposit = Integer.parseInt(stdin.readLine());
savings.addFunds(deposit);
System.out.printl(“Enter amount of withdrawal: “);
int withdrawal = Integer.parseInt(stdin.readLine());
savings.removeFunds(withdrawal);
System.out.println(“Closing balance: “ + savings.getBalance());

}
}

COP 3330: Exception Handling Page 47 © Mark Llewellyn

Output from Modified_Deposits.java

User supplies a negative
withdrawal amount
causing a bad withdrawal
exception.

User supplies a withdrawal
amount which is larger than
the balance causing a bad
balance exception to be
thrown.

