
COP 3330: UML Page 1 © Mark Llewellyn

COP 3330: Object-Oriented Programming
Summer 2007

UML

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2007

COP 3330: UML Page 2 © Mark Llewellyn

UML Basics
• UML contains 3 main types of diagrams.

1. Static diagrams
– Describe the unchanging logical structure of software

elements by depicting classes, objects, and data structures,
and the relationships that exist between them.

2. Dynamic diagrams
– Illustrate how software entities change during execution by

depicting the flow of execution, or the way entities change
state.

3. Physical diagrams
− Show the unchanging physical structure of software entities

by depicting physical entities such as source files, libraries,
binary files, data files, etc., and the relationships that exist
between them.

COP 3330: UML Page 3 © Mark Llewellyn

A Java Example – TreeMap.java
public class TreeMap

TreeMapNode topNode = null;

public void add(Comparable key, Object value) {
if (topNode == null)

topNode = new TreeMapNode(key, value);
else

topNode.add(key,value);
}//end add

public Object get(Comparable key) {
return topNode == null ? null : topNode.find(key);

}

class TreeMapNode {
private final static int LESS = 0;
private final static int GREATER = 1;
private Comparable itsKey;
private Object itsValue;
private TreeMapNode nodes[] = new TreeMapNode[2];

COP 3330: UML Page 4 © Mark Llewellyn

public TreeMapNode (Comparable key, Object value) {
itsKey = key;
itsValue = value;

}

public Object find(Comparable key) {
if(key.compareTo(itsKey) == 0) return itsValue;
return(findSubNodeForKey(selectSubNode(key), key);

}

private int selectSubNode(Comparable key) {
return (key.compareTo(itsKey) < 0) ? LESS : GREATER;

}

private Object findSubNodeForKey(int node, Comparable
return nodes[node] == null ? null : nodes[node].find(key);

}

public void add(Comparable key, Object value) {
if(key.compareTo(itsKey) == 0)

itsValue = value;
else

addSubNode(selectSubNode(key), key, value);
}

COP 3330: UML Page 5 © Mark Llewellyn

private void addSubNode(int node,
Comparable key,
Object, value) {

if(nodes[node] == null)
nodes[node] = new TreeMapNode(key, value);

else nodes[node].add(key, value);
}

The ? : operator in Java can sometimes be used in place of a conditional
statement. The operator has the following form:

testexpression ? expr1 : expr2

When executed, testexpression is evaluated first. if testexpression
evaluates to true, then the value of the operation is expr1; otherwise, the
value of the operation is expr2. A colon separates the two expressions.

int min = (input1 <= input2) ? input1 : input2;

int min;
if (input1 <= input2) {

min = input1;
}
else min = input2;

equivalent

COP 3330: UML Page 6 © Mark Llewellyn

Class Diagram for TreeMap

TreeMap

+add(key,value)
+get(key)

TreeMapNode

+add(key,value)
+find(key)

topNode

<<interface>>
Comparable

Object
itsValue

itsKey

nodes2

Rectangle represent classes, and arrows represent
relationships.

In this diagram all the relationships are associations.
Associations are simple data relationships in which
one object holds a reference to, and invokes
methods upon, the other.

A number next to an arrowhead typically shows the
number of instances held by the relationship. If that
number is greater than one then some kind of
container (usually an array) is implied.

COP 3330: UML Page 7 © Mark Llewellyn

Class Diagrams
• The class diagram on the previous page illustrates the major

classes and relationships in the program.
• It shows that there is a TreeMap class that has public

methods named add and get.
• It shows that TreeMap holds a reference to a

TreeMapNode in a variable named topNode.
• It shows that each TreeMapNode holds a reference to two

other TreeMapNode instances in some kind of container
named nodes.

• It also shows that each TreeMapNode instance holds
references to two other instances in variables named itsKey
and itsValue.

– The itsKey variable holds a reference to some instance that
implements the Comparable interface.

– The itsValue variable simply holds a reference to some object.

COP 3330: UML Page 8 © Mark Llewellyn

Class Diagram for TreeMap

TreeMap

+add(key,value)
+get(key)

TreeMapNode

+add(key,value)
+find(key)

topNode

<<interface>>
Comparable

Object
itsValue

itsKey

nodes2

The name on an association maps to the name of
the variable that holds the reference.

Notice how the association relationships correspond
to instance variables. For example, the association
from TreeMap to TreeMapNode is named
topNode and corresponds to the topNode variable
within TreeMap.

Class icons can have more than one compartment.
The top compartment always holds the name of the
class. The other compartments describe functions
and variables.

COP 3330: UML Page 9 © Mark Llewellyn

Object Diagrams
• The object diagram (example on the next page) illustrates a

set of objects and the relationships at a particular moment
during the execution of the system. You can view it as a
snapshot of the memory.

• In object diagrams, the rectangular icons represent objects.
You can tell that they are objects rather than classes because
their names are underlined.

– The name after the colon is the name of the class that the object
belongs to. Note that the lower compartment of each object shows
the value of that object’s itsKey variable.

• The relationships between the objects are called links, and are
derived from the associations in the class diagram (see page 8).

– Notice that the links are named for the two array cells in the nodes
array.

COP 3330: UML Page 10 © Mark Llewellyn

Object Diagram for TreeMap

:TreeMap

:TreeMapNode

−itsKey = “Mark”

topNode

:TreeMapNode

−itsKey = “Debi”

:TreeMapNode

−itsKey = “Rita”

nodes[LESS] nodes[GREATER]

:TreeMapNode

−itsKey = “Anna”

:TreeMapNode

−itsKey = “Kristi”

:TreeMapNode

−itsKey = “Nadia”

:TreeMapNode

−itsKey = “Tess”

nodes[LESS] nodes[GREATER] nodes[LESS] nodes[GREATER]

COP 3330: UML Page 11 © Mark Llewellyn

Sequence Diagrams

• The sequence diagram (example on page 13) describes
how a method is implemented. The example on the next
page illustrates the implementation of the
TreeMap.add method.

• The stick figure represents an unknown caller. This
caller invokes the add method on a TreeMap object.

– If the topNode variable is null, then TreeMap responds
by creating a new TreeMapNode and assigning it to
topNode.

– Otherwise, TreeMap sends the add message (the
invocation) to topNode.

COP 3330: UML Page 12 © Mark Llewellyn

Sequence Diagrams (cont.)

• The Boolean expressions inside the square brackets
are called guards. They show which path is to be
taken.

• The message arrow that terminates on the
TreeMapNode icon represents construction.

• The little arrows with circles are called data tokens.
In this case they depict the construction arguments.

• The skinny rectangle below TreeMap is called an
activation and depicts how much time the add
method executes.

COP 3330: UML Page 13 © Mark Llewellyn

Sequence Diagram for TreeMap.add

:TreeMap

topNode:
TreeMapNode

value
add(key, value)

add(key, value)

[topNode == null]

[topNode != null]

key

COP 3330: UML Page 14 © Mark Llewellyn

Collaboration Diagrams

• Collaboration diagrams contain the same information
that sequence diagrams contain. However, whereas
sequence diagrams make the order of the messages clear,
collaboration diagrams make the relationships between
the objects clear.

• The collaboration diagram shown on the next page
illustrates the case of the TreeMap.add method when
topNode is not null.

• The objects are connected by relationships called links.
A link exists wherever one object can send a message to
another.

COP 3330: UML Page 15 © Mark Llewellyn

Collaboration Diagrams

• Traveling over those links are the messages
themselves. They are depicted as the smaller
arrows. The messages are labeled with the name
of the message, its sequence number, and any
guards that apply.

• The dot structure of the sequence number shows
the calling hierarchy.

– The TreeMap.add method (message 1)
invokes the TreeMapNode.add method
(message 1.1). Thus, message 1.1 is the first
message sent by the method invoked by message
1.

COP 3330: UML Page 16 © Mark Llewellyn

Collaboration Diagram for TreeMap.add

:TreeMap

topNode:
TreeMapNode

1. add(key, value)

[topNode != null]
1.1 add(key, value)

COP 3330: UML Page 17 © Mark Llewellyn

UML and FSA
• UML has a very comprehensive notation for finite state

machines. The following example illustrates just the
barest subset of this notation.

• Consider a turnstile for a subway. There are two states
named Locked and Unlocked. Two events may be
sent to the machine. The coin event means that the
user has dropped a coin into the turnstile. The pass
even means that the user has passed through the
turnstile.

• The arrows are called transitions. They are labeled with
the event that triggers the transition and the action that
the transition performs. When a transition is triggered it
causes the state of the system to change.

COP 3330: UML Page 18 © Mark Llewellyn

UML and FSA
Locked

Unlocked

pass/ ALARM

coin/ Thank You!

coin/ Unlock

pass/ ALARM

If we are in the Locked state and a coin event occurs, then a transition to the Unlocked
state occurs and the Unlock function is invoked.

If we are in the Unlocked state and a pass event occurs, then a transition to the Locked
state occurs and the Lock function is invoked.

If we are in the Unlocked state and a coin event occurs, then the system remains in the
Unlocked state and the Thank You! function is invoked.

If we are in the Locked state and a pass event occurs, then the system remains in the
Locked state and the Alarm function is invoked.

State diagrams such as this are extremely useful for determining the way a system
behaves. They provide an opportunity to explore what the system should do in unexpected
cases, such as when the user deposits a coin, and then deposits another coin for no
apparent reason.

COP 3330: UML Page 19 © Mark Llewellyn

Working With UML and Modeling
• Why do engineers build models? Why do aerospace

engineers build models of aircraft? Why do structural
engineers build models of bridges? What purposes do
these models serve?

Models are built to find out if something will work.

Engineers build models to see if there designs will work.

Aerospace engineers build models of aircraft and put them in wind
tunnels to see if they will fly.

Structural engineers build models of bridges to see if they will stand.

Architects build models of buildings to see if their clients will like the way
they look.

COP 3330: UML Page 20 © Mark Llewellyn

Working With UML and Modeling (cont.)

• This implies that models must be testable.
– It does no good to build a model if there are no criteria you can

apply to that model in order to test it. If you can’t evaluate the
model, the model has no value.

• Why don’t aerospace engineers just build the plane and
try to fly it? Why don’t structural engineers just build
the bridge and see if it stands?

Because airplanes and bridges are a lot more expensive
to to build than the models.

Designs are investigated with models when the models
are much cheaper to construct than the real thing.

COP 3330: UML Page 21 © Mark Llewellyn

Why Build Models of Software

• Can a UML diagram be tested? Is it much cheaper to
create and test than the software it represents?

– In both cases the answer is nowhere near as clear as it is for
aerospace engineers and structural engineers.

• There are no firm criteria for testing UML diagrams. we
can look at it, evaluate it, apply principles and patterns to
it, but in the end the evaluation is still very subjective.

• UML diagrams are less expensive to create than
software is to write, but not by a huge factor.

– Indeed, there are times when it is easier to change the source
code than it is to change the UML diagram!

• When does it make sense to use UML?

COP 3330: UML Page 22 © Mark Llewellyn

Why Build Models of Software (cont.)

• We make use of UML whenever we have:
1. Something definitive to test, and
2. using UML to test it is cheaper than writing the code to test it.

• Blueprints can be drawn without digging foundation,
pouring concrete, or hanging windows. In short, it is
much cheaper to plan a building up front than it is to try
to build it without a plan. It doesn’t cost much to throw
away a faulty blueprint, but it costs a lot to tear down a
faulty building.

• Once again things are not so clear-cut in software. It is
not at all clear that drawing UML diagrams is much
cheaper than writing code. Many project teams have
spent more on UML diagrams than they have on the
code.

COP 3330: UML Page 23 © Mark Llewellyn

How To Start A Model
• Typically, the easiest place to start the modeling of a

system is by modeling the behavior of the system using
sequence diagrams.

• As a running example, let’s consider the design of the
software that controls a cell phone. How does this
software make the phone call?

• We might start out by imagining that the software
detects each button the user presses and sends a message
to some object that controls dialing.

• We’ll start out by drawing a Button object and a
Dialer object and showing the Button sending
many digit messages to the Dialer.

COP 3330: UML Page 24 © Mark Llewellyn

How To Start A Model (cont.)

• What will the Dialer do when it receives a digit
message? It will need to display the digit on the
screen. So we’ll refine our sequence diagram to send
displayDigit to the Screen object.

: Button : Dialer
1*: digits(n)

: Button : Dialer
1*: digits(n)

: Screen

1.1: displayDigits(n)

COP 3330: UML Page 25 © Mark Llewellyn

How To Start A Model (cont.)

• Next, the Dialer should cause a tone to be emitted
from the speaker. This means that we’ll need to send the
tone message to the Speaker object. So we’ll again
refine our sequence diagram to look like the following:

: Button : Dialer
1*: digits(n)

: Screen

1.1: displayDigits(n)

: Speaker

1.2: tone(n)

COP 3330: UML Page 26 © Mark Llewellyn

How To Start A Model (cont.)

• At some point the user will press the Send button, indicating that
they want the call to go through. At that point we’ll have to tell the
cellular radio to connect to the cellular network and pass along the
phone number than was dialed. This will update our sequence
diagram to the following:

: Dialer
1*: digits(n)

: Screen

1.1: displayDigits(n)

: Speaker

1.2: tone(n)

send: Button

: Button

2: Send

: Radio

2.1: connect(pno)

COP 3330: UML Page 27 © Mark Llewellyn

How To Start A Model (cont.)

• Once the connection has been established, the Radio can tell the
Screen to light up the “in use” indicator. This message will almost
certainly be sent in a different thread of control (which is denoted by
the letter in front of the sequence number). The final collaboration
diagram would look like the following:

: Dialer
1*: digits(n)

: Screen

1.1: displayDigits(n)

: Speaker

1.2: tone(n)

send: Button

: Button

2: Send

: Radio

2.1: connect(pno)

A1: inUse

COP 3330: UML Page 28 © Mark Llewellyn

Class Diagram for Cell Phone Problem
• Shown below is the UML class diagram for the cell phone

problem.
• Notice that the class diagram contains a class for each object

that appeared in the collaboration diagram we constructed,
and an association for each link in the collaboration. For right
now, we’ll skip any aggregation and composition details.

Button Dialer

ScreenSpeaker

Radio

COP 3330: UML Page 29 © Mark Llewellyn

Further Analysis Of Our Design
• Having constructed our class diagram, let’s analyze the

dependencies that are shown in the diagram. Remember,
we’re going to write code based on this diagram at some
point.

• Why should the Button depend on the Dialer?
This association would imply the following in code:

public class Button

{ private Dialer itsDialer;

public Button(Dialer dialer)

{ itsDialer = dialer; }

...

}

COP 3330: UML Page 30 © Mark Llewellyn

Further Analysis Of Our Design (cont.)

• There is no valid reason that the source code of Button
should mention the source code of Dialer.

– For example, Button is a class that could be used in many
different contexts. We could use the Button class to control
the on/off switch, or the menu button, or the other control
buttons on the phone, not to mention the possibilities of
applications other than that of a cell phone.

– If the Button is bound to the Dialer, the we won’t be able
to reuse the Button code for other purposes.

• This problem can be fixed by inserting an interface
between Button and Dialer, as shown in the UML
diagram on the next page.

COP 3330: UML Page 31 © Mark Llewellyn

Isolating Button From Dialer
• Each Button is given a token that identifies it. When the Button class

detects that the button has been pressed, it invokes the buttonPressed
method of the ButtonListener interface, passing the token. This breaks
the dependence of Button upon Dialer and allows Button to be used
virtually anywhere that needs to receive button presses.

Button
‒ token

<<interface>>
ButtonListener

+ buttonPressed(token)

Dialer

ScreenSpeaker

Radio

Notice that this change has no
effect on the dynamic diagram on
page 27. The objects are the
same, only the classes have
changed.

COP 3330: UML Page 32 © Mark Llewellyn

Adapting ButtonS To DialerS
• Unfortunately, the change we just made allows Dialer to know

something about Button. Why should Dialer expect to get its
input from ButtonListener? Why should it have a method within
it named buttonPressed? What does the Dialer have to do
with Button?

– The answer is of course, nothing!

• We can solve this problem, and get rid of all the token nonsense, by
using a batch of little adapters.

– The ButtonDialerAdapter implements the ButtonListener
interface. It receives the buttonPressed method and sends a
digit(n) message to the Dialer. The digit passed to the Dialer is
held in the adapter.

• This is illustrated by the UML diagram on the next page.

COP 3330: UML Page 33 © Mark Llewellyn

Adapting ButtonS To DialerS (cont.)

Button
<<interface>>

ButtonListener
+ buttonPressed()

Dialer

ScreenSpeaker

Radio
ButtonDialerAdapter

‒ digit
+ digit(n)

COP 3330: UML Page 34 © Mark Llewellyn

Envisioning the Code
• Once we’ve completed the UML diagram on the previous page,

we should be able to envision the code for the
ButtonDialerAdapter.

• Envisioning the code is critically important when dealing with
UML diagrams. If you are drawing diagrams (modeling) and
cannot envision the code that they represent, then you are in
trouble with your modeling!

• Stop what you are doing and figure out how to convert it to code.

• Never let the diagrams become an end unto themselves. You
must always be sure you know what code you are representing
with the diagram!

• The code for the ButtonDialerAdapter is shown on the next page.

COP 3330: UML Page 35 © Mark Llewellyn

Envisioning the Code

public class ButtonDialerAdapter implements ButtonListener
{ private int digit;

private Dialer dialer;
public ButtonDialerAdapter(int digit, Dialer, dialer)
{ this.digit = digit;

this.dialer = dialer;
}
public void buttonPressed()
{

dialer.digit(digit);
}

}

COP 3330: UML Page 36 © Mark Llewellyn

Evolution Of UML Diagrams
• Unlike the earlier change we made (adding the interface), this last

change has caused the dynamic diagram (see page 27) to become
invalid. The dynamic model knows nothing of the adapters we’ve
just added.

• Since the class diagram has been updated, so too must the
dynamic diagram. The updated version appears on the next page.

• This illustrates how the diagrams evolve together in an iterative
fashion.

– You start with a little bit of dynamics (objects).

– Then you explore what those dynamics imply to the static
relationships (classes).

– You alter the static relationships according to the principles of good
design.

– Then you go back and improve the dynamic diagrams.

COP 3330: UML Page 37 © Mark Llewellyn

Updated Dynamic UML Diagram

1*: buttonPressed

: Dialer
1.1: digit(n)

: Screen

1.1.1: displayDigit(n)

: Speaker

1.1.2: tone(n)

: Button

2.1: Send

: Radio

2.1.1: connect(pno)

A1: inUse

: ButtonDialer
Adapter

buttonListener

: sendButton
DialerAdapter

buttonListener

2: buttonPressed

COP 3330: UML Page 38 © Mark Llewellyn

A Closer Look At Class Diagrams in UML
• UML class diagrams allow us to denote the static contents of - and the

relationships between – classes.

• In a class diagram you can show the member variables, and member
functions (methods) of a class.

• It is also possible to show whether one class inherits from another, or
whether it holds a reference to another.

• In short, class diagrams allow us to depict all the source code
dependencies between classes.

– This is a valuable benefit. It can be much easier to evaluate the dependency
structure of a system from a diagram than from source code. Diagrams
make certain dependency structures visible .

– You can see dependency cycles, and determine how best to break them.

– You can see when abstract classes depend on concrete classes, and
determine a strategy for rerouting such dependencies.

COP 3330: UML Page 39 © Mark Llewellyn

The Basics of Class Diagrams
• The simplest form of a class diagram consists only of a

single rectangular icon which depict the class name.

– This is a very common way to represent a class. The classes on
many diagrams don’t need any more than their name to make it clear
what is going on in the source code.

• A class icon can also be subdivided into compartments.
The top compartment is for the name of the class, the second
is for the variables of the class, and the third is for the
methods of the class.

Dialer
public class Dialer
{
}

corresponding source code

class icon

COP 3330: UML Page 40 © Mark Llewellyn

The Basics of Class Diagrams (cont.)

• The diagram below illustrates the compartments and how they translate
into code.

– For variables and functions, the preceding character represents the modifier.

• (–) denotes private.

• (#) denotes protected.

• (+) denotes public.

– The return type of a method is shown after the colon following the method.

Dialer
public class Dialer
{

private Vector digits;
int nDigits;

public void digit (int n);
protected boolean recordDigit (int n);

}

corresponding source code

class icon with all 3 compartments

‒ digits : Vector
‒nDigits: int

+ digit(n : int)
recordDigit(n : int) : boolean

COP 3330: UML Page 41 © Mark Llewellyn

Class Diagrams - Associations
• Associations between classes most often represent instance

variables that hold references to other objects. For example, in
the diagram shown below, there is an association between Phone
and Button.

– The direction of the arrow indicates that Phone holds a reference to Button.

– The name near the arrowhead is the name of the instance variable.

– The number near the arrowhead indicates the number of references held. If
no limit is set (such as a Vector, list, or some type of container) then a star is
utilized to represent many.

public class Phone
{

private Button itsButtons[20];

}

Phone
itsButtons

Button
20

corresponding source code

COP 3330: UML Page 42 © Mark Llewellyn

Class Diagrams - Inheritance
• You have to be careful in UML when you draw arrowheads. In

the diagram on the left below, the arrowhead represents an
inheritance relationship. The arrowhead in the diagram on the
right represents an association. If you draw the arrowheads
carelessly, it will be difficult to tell whether you are depicting an
association or inheritance.

Phone
itsButtons

Button
20

Phone

Communication
Device

Inheritance

Association

COP 3330: UML Page 43 © Mark Llewellyn

Class Diagrams – Inheritance (cont.)

• In UML, all arrowheads point in the direction of source code
dependency. In the inheritance diagram on the previous slide, it is the
Phone class than mentions the name of the
CommunicationDevice, so the arrowhead points at
Communication Device. Thus, in UML, inheritance arrows point
at the base class.

• One technique that is fairly commonly employed to help with this
potential misunderstanding is to model associations horizontally in the
UML diagram and inheritance vertically.

• UML has a special notation for the kind of inheritance used between a
Java class and a Java interface. Its shown as a dashed inheritance arrow.

– Actually, it is more common to use the lollipop notation which I used in the
UML diagram on page 37. Interfaces are drawn as little lollipops on the
classes that implement them.

COP 3330: UML Page 44 © Mark Llewellyn

UML Class Diagram – ATM Example

SpainshUI EnglishUI

<<interface>>
Transaction

+ execute()

MessageLog

+ logMessage

<<interface>>
Screen

+ displayMessage

<<interface>>
TransferUI

+ promptTAmt
+ promptFromAcct
+ promptToAcct

<<interface>>
DepositUI

+ promptDAmt
+ promptEnvelope

<<interface>>
WithdrwalUI

+ promptWAmt
+ notifyLackFunds

Transfer
Transaction

Deposit
Transaction

Withdrawal
Transaction

<<interface>>
DepositAccepter

<<interface>>
CashDispenser

UI

+ displayMessage

COP 3330: UML Page 45 © Mark Llewellyn

Class Diagrams – Explanation of the Example
• You should note several things in the UML example on the previous

page.

1. Notice the convention of horizontal association and vertical inheritance.
This really helps to differentiate these vastly different types of relationships.
Without this convention, it can be hard to understand the meaning out of the
tangle of lines and icons.

2. Notice how the diagram is divided into three distinct zones. The
transactions and their actions are on the left side of the diagram, the various
interfaces are all on the right, and the user interface (UI) implementation is
on the bottom.

3. See how the connections between the grouping are minimal and regular. In
one case it is three associations, all pointing the same way. In the other case
it is three inheritance relationships all merged into a single line. The
grouping combined with the way they are connected help the reader to see
the diagram in coherent pieces.

4. You should be able to “see” the code as you look at this diagram.

COP 3330: UML Page 46 © Mark Llewellyn

Class Diagrams – Explanation of the Example (cont.)
public class UI implements WithdrawalUI, DepositUI, TransferUI
{ private Screen itsScreen;

private MessageLog itsMessageLog;

public void displayMessage (String message)
{ itsMessageLog.logMessage(message);

itsScreen.displayMessage(message);
}

}

• Does the code above look like what you would expect to see based on
the UML diagram?

• Notice that all of the interfaces are clearly marked in the diagram. This
makes it very clear to the reader which classes are intended to be
interfaces and which are intended to be implemented.

– For example, the diagram immediately tells you that
WithDrawalTransaction talks to a CashDispenser interface.
Obviously, some class in the system will need to implement the
CashDispenser, but in this diagram we don’t care which class.

COP 3330: UML Page 47 © Mark Llewellyn

Class Diagrams – Explanation of the Example (cont.)

• Also notice that I haven’t been particularly thorough in
documenting the methods of the various UI interfaces.

– For example, it would seem obvious that the WithdrawalUI will
need more than just the two methods of PromptWAmt and
NotifyLackFunds. For example, what about methods such as
promptForAcct or informCashDispenserEmpty?

– Putting these methods in the diagram would simply clutter up the
picture. All we have included in the diagram is a representative
batch of methods. These give the reader the idea of what is going on
inside of the class and that is all that is really necessary at this level.

COP 3330: UML Page 48 © Mark Llewellyn

Class Diagram – Practice Problem

• Below is a description of a system. Construct a UML class
diagram that incorporates the definition given.

– A bank offers customers three types of accounts: checking, savings,
and money market. Checking accounts pay 3% interest. Savings
accounts must have a minimum balance of $150 and pay 5% interest.
Money market accounts must have a minimum balance of $1000 and
pay 8% interest. The system is to provide a report that will list all of
the accounts and the interest accrued during the preceding 12
months. The system will also provide an auditor that will print all of
the accounts whose balance has fallen below the required minimum
for that type of account.

• A solution appears on the next page. Try it yourself first!

COP 3330: UML Page 49 © Mark Llewellyn

Class Diagram for Bank Problem
• Shown below is the UML class diagram for the bank problem.

Account

Money MarketSavingsChecking

Bank+ audit() : void

+ audit() : void + audit() : void + audit() : void

COP 3330: UML Page 50 © Mark Llewellyn

Further Analysis Of The Bank Design
• Checking, Savings, and MoneyMarket all

inherited from Account. Each of these three classes
has an “is-a” relationship with Account. In other
words, Checking is-a Account, and so on.

• The superclass Account will provide the attributes,
account number, name, current balance, etc. and
behaviors (the accessor and mutator methods) common
to all accounts.

• The specialized rules regarding minimum balances and
the computation of interest will be delegated to the
subclasses which define each account type.

• This means that the Bank class will contain Accounts
and not worry about the specific types of accounts it
contains.

COP 3330: UML Page 51 © Mark Llewellyn

Further Analysis Of The Bank Design (cont.)

• Consider for a moment how the design of the banking
system would change it you were asked to add a no
interest checking account to the system.

– Using inheritance, this is an extremely easy task. You would
need only to create a new subclass that captures the details of the
new account type. All of the standard behaviors would be
inherited directly from the Account superclass. Since the
new account type is an Account, the Bank class will already
know how to work with the new class. Thus, the only
modification to the existing code would be the addition of the
new class. In a procedural language, the changes would be
much more substantial.

• The last design feature that we need to consider is the
“auditor” feature.

COP 3330: UML Page 52 © Mark Llewellyn

Further Analysis Of The Bank Design (cont.)

• Did you create an Auditor class that would go through all
the accounts stored in a Bank and check to see if they satisfy
the minimum balance requirements?

– If you did so, this is not a good design decision. The problem
with this is that you would be creating a class which consists of
a single method whose primary purpose is to provide
functionality.

– A better way to deal with the auditing feature is to provide an
audit method in the Bank, Account, Checking,
Savings, and MoneyMarket classes. The audit()
method would step through the accounts in manages invoking,
one by one, the specialized audit methods for each type of
account.

• The audit() method in the Checking, Savings, and
MoneyMarket classes would verify that the minimum
requirements have been met for this account type and, if not, print
an appropriate message.

COP 3330: UML Page 53 © Mark Llewellyn

Further Analysis Of The Bank Design (cont.)

• Note that the end result of either design, that of a
separate auditor class and that of auditor methods inside
each of the class shown on page 49, provides the same
functionality.

• However, the second design is much easier to extend.
Consider again, the question of what you would have to
do to add a new type of account.

– For the second design, all you have to do is add a new subclass
to the system that describes the new account and to make sure
that that new class includes its own specialized audit method.

– In the first design, you must not only add a new subclass, but
you must also remember to modify the Auditor class to
handle this new account type.

COP 3330: UML Page 54 © Mark Llewellyn

Further Analysis Of The Bank Design (cont.)

• One of the marks of a good design is that when a change
is made to the specification of the problem, the change to
the design is localized to a single class rather than
propagating through many classes.

• When you find yourself saying things like, “We must
add a new subclass A, and also modify classes B, C, and
D to deal with this new subclass,” you greatly increase
the likelihood for error and complicate the maintenance
process.

COP 3330: UML Page 55 © Mark Llewellyn

Overview of UML
• UML defines nine different graphical diagrams. The choice of which

diagrams one creates can influence how a problem is encountered and
how a corresponding solution is shaped. As I’ve mentioned before, we
will examine only the most useful components of UML that will apply to
the widest range of problems. Shown below is the UML hierarchy.

1. Class diagram (static)

2. Use-case diagram

3. Behavior diagram (dynamic):

3.1. Interaction diagram:

3.1.1. Sequence diagram

3.1.2. Collaboration diagram

3.2. Statechart diagram

3.3. Activity diagram

4. Implementation diagram:

4.1. Component diagram

4.2. Deployment diagram

COP 3330: UML Page 56 © Mark Llewellyn

Use-Case Diagrams
• The use-case diagram is a concept that was first

introduced in what is now an obsolete modeling tool
called object-oriented software engineering (OOSE).

• The functionality of a system is described in a number of
different use cases, each of which represents a specific
flow of events in the system.

• A use case corresponds to a sequence of transactions, in
which each transaction in invoked from outside the
system (actors) and engages internal objects to interact
with one another and with the system’s surroundings.

• The description of a use case defines what happens in
the system when the use case is performed.

COP 3330: UML Page 57 © Mark Llewellyn

Use-Case Diagrams (cont.)

• In essence, the use-case model defines the outside
(actors) and inside (use case) of the system’s behavior.

• Use cases represent specific flows of events in the
system.

• The use cases are initiated by actors and describe the
flow of events that these actors set off. An actor is
anything that interacts with a use case: It could be a
human user, external hardware, or another system.

– An actor represents a category of user rather than a physical
user. Several physical users can play the same role. For
example, in terms of a Member actor, many people can be
members of a library, which can be represented by one actor
called Member.

COP 3330: UML Page 58 © Mark Llewellyn

Use-Case Diagrams (cont.)

• A use-case diagram is a graph of actors, a set of cases
enclosed by a system boundary, communication
(participation) associations between the actors and the
use cases, and generalization among the use cases.

• The importance of use-case diagrams, has in large part,
been exaggerated and overcomplicated.

• The main thing about use-case diagrams is to keep them
simple. It is this simplicity that will make the diagram
most useful. If you once proceed down the dark path of
use case complexity, forever will it dominate your
destiny. Use the force, and keep your use cases simple.

COP 3330: UML Page 59 © Mark Llewellyn

Use-Case Diagrams (cont.)

• As an example of a use-case diagram. consider a typical help
desk.

• The use-case diagram on the page 13 illustrates the
relationship among the actors and the use cases within the
system.

– A client makes a call that is taken by an operator., who
determines the nature of the problem.

– Some calls can be answered immediately; other calls require
research and a return call.

• A use case is shown as an ellipse containing the name of the
use case. The name of the use case can be placed below or
inside the ellipse.

COP 3330: UML Page 60 © Mark Llewellyn

Use Case Diagram - Example

client

operator

support
representative

Help Desk

make a call

take the call

do research

return a call

COP 3330: UML Page 61 © Mark Llewellyn

Use-Case Diagrams (cont.)

• The following relationships are shown in a use-case
diagram:

– Communication: The communication relationship of an actor in
a use case is shown by connecting the actor symbol to the use-
case symbol with a solid line. The actor is said to communicate
with the use case.

– Uses: A uses relationship between use cases is shown by a
generalization arrow from the use case. This is the same as in
class hierarchies.

– Extends: The extends relationship is used when you have one
use case that is similar to another use case but does a but more,
again similar to a subclass.

COP 3330: UML Page 62 © Mark Llewellyn

Dynamic Diagrams
• Events happen dynamically in all systems: objects are created and

destroyed, objects send messages to one another in an orderly
fashion, and in some systems, external events trigger operations on
certain objects.

• Furthermore, objects have states. The state of an object would be
difficult to capture in a static model.

• The state of an object is the result of its behavior.
– Consider a conventional phone. When a telephone is first installed, it is

in an idle state, meaning that not previous behavior is of great interest
and that the phone is ready to initiate and receive calls. When someone
picks up the handset, we say that the phone is “off the hook” and in the
dialing state; in this state we do not expect the phone to ring: we expect
to be able to initiate a conversion with someone on another phone.
When the phone is “on the hook”, if it rings and we pick up the handset,
the phone is now in a receiving state, and we expect to be able to
converse with the person that initiated the conversation.

COP 3330: UML Page 63 © Mark Llewellyn

Dynamic Diagrams (cont.)

• Each class may have an associated activity diagram that
indicates the behavior of a class instance (an object). In
conjunction with the use-case diagram, we can provide a
script or interaction diagram to show the time or event
ordering of messages as they are evaluated.

• Interaction diagrams are diagrams that describe how groups
of objects collaborate to get the job done.

• Interaction diagrams capture the behavior of a single use case,
showing the pattern of interaction among objects. The
diagram will show a number of example objects and the
messages passed between those objects within the use case.

• There are two types of interaction diagrams in UML:
sequence diagrams and collaboration diagrams.

COP 3330: UML Page 64 © Mark Llewellyn

Sequence Diagrams
• Sequence diagrams are the most common of the dynamic

models drawn by UML users. As with other types of
diagrams, UML provides lots and lots of notational
syntax to help you draw truly incomprehensible
diagrams.

• We’ll restrain ourselves to look only at the most useful
parts of this notation and not worry about too many
details.

• Sequence diagrams are a way of describing the behavior
of a system by viewing the interaction between the
system and its environment.

• A sequence diagram shows an interaction arranged in a
time sequence. It shows the objects participating in the
interaction by their lifelines and the messages they
exchange, arranged in a time sequence.

COP 3330: UML Page 65 © Mark Llewellyn

Sequence Diagrams (cont.)

• A sequence diagram has two dimensions: the vertical
dimension represents time, the horizontal dimension
represents different objects.

• The vertical line is called the object’s lifeline. The
lifeline represents the object’s existence during the
interaction.

• An object is shown as a rectangle at the top of a dashed
vertical line (the lifeline).

• A role is a slot for an object within a collaboration that
describes the type of object that may play the role and its
relationships to other roles.

• Note: A sequence diagram does not show the
relationships among the roles or the association amount
the objects.

COP 3330: UML Page 66 © Mark Llewellyn

Sequence Diagrams (cont.)

• Each message is represented by an arrow between the lifelines
of two objects.

• The order in which these messages occur is shown top to
bottom on the diagram.

• Each message is labeled with the message name. The label
can also include the argument and some control information
and show self-delegation (a message that an object sends to
itself) by sending the message arrow back to the same lifeline.

• The horizontal ordering of the lifelines is arbitrary. Often,
call arrows are arranges to proceed in one direction across the
diagram, but this is not always possible and the order conveys
not information.

• A sequence diagram is a good way to understand the overall
flow of control in a program.

COP 3330: UML Page 67 © Mark Llewellyn

Sequence Diagram – Example (see page 15)

Telephone Call

Caller Exchange Receiver Talk

OffHook

DialTone

DialNumber

RingTone

OffHook

OnHook

COP 3330: UML Page 68 © Mark Llewellyn

Collaboration Diagrams
• Collaboration diagrams represent a collaboration, which is a

set of objects related in a particular context, an interaction,
which is a set of messages exchanged among the objects
within the collaboration to achieve a desired outcome.

• In a collaboration diagram, objects are shown as figures. As
with sequence diagrams, arrows indicate the message sent
within the given use case.

• In a collaboration diagram, the sequence is indicated by
numbering the messages.

– Some people argue that numbering the messages makes it more
difficult to see the sequence than does a sequence diagram.
However, since the collaboration diagram is more compressed,
other things can be shown more easily. For example, how the
objects are linked together.

• Alternate numbering schemes are possible with collaboration
diagrams. The following two pages give two alternative
schemes for the phone example.

COP 3330: UML Page 69 © Mark Llewellyn

Collaboration Diagram – Example (see page 15)

Telephone Call

Caller

Exchange

Receiver

Talk

2: DialTone 3: DialNumber

4: RingTone

5: OffHook

6: OnHook

1: OffHook

Object Message

Collaboration diagram using
simple numbering scheme

COP 3330: UML Page 70 © Mark Llewellyn

Collaboration Diagram – Example (see page 15)

Telephone Call

Caller

Exchange

Receiver

Talk

2.1: DialTone 1.2: DialNumber

2.2: RingTone

3.1: OffHook

4.1: OnHook

1.1: OffHook

Object Message

Collaboration diagram using
decimal numbering scheme.

Example: 1.2: DialNumber
means that the Caller(1) is
calling the Exchange(2).

