PAGE
2

COP3330.01, Fall 2001

S. Lang

Solution key to Test #1 (10/02/2001)

Oct. 9, 2001
Instructions: The test contains 4 pages (2 double-sided sheets), 3 problems, and 100 total points. A separate sheet containing the Java class TwoDPoint should be used to answer Problems 2 and 3. Write your answers clearly in the space provided. Your signature below means you have read and understood the instructions.

Signature ______________________________________

1. (30 pts.) Multiple Choice questions. Select the answers from the list following this problem, and place the numerical label next to the answer into the blank space of the questions.

(a) In Java programs which access modifier should be used for instance variables that are meant to be accessible to the class and its extended classes (but not to arbitrary classes)? protected
(b) In Java programs which keyword is used for denoting class variables? static
(c) Software development takes several phases; the phase immediately following the analysis phase is design in a typical order.

(d) When attempting to solve a complex problem, the process of abstraction identifies (or separates) the essential aspects (characteristics) from the non-essential ones.

(e) In Java programming, the file that runs in a JVM environment is byte code.

(f) Java programs that can be embedded (and run) from Web pages are java applets.

(g) A desirable quality of software systems which deals with the ease of making corrections, adaptations, and extensions is maintainability.

(h) In OO programming, what is a collection of objects with similar characteristics and behaviors? class.

(i) In Java programs, which part corresponds to the states of the objects? variables
(j) In software development, the team effort including programmers and management input is termed _programming in the large.

Answer List (1 –20):

2. (25 pts.) In this problem you are to define a LineSegment class which uses two TwoDPoint objects as its instance variables to specify a 2-dimensional line segment. Now answer the following questions (a) and (b) using the proper Java syntax. In particular, show the difference between your writing of upper-case and lower-case letters very clearly.

(a) (10 pts.) Write the class LineSegment including the instance variables named first and second of type TwoDPoint. Include one constructor which takes two TwoDPoint objects p1, p2 as the parameters, and creates a LineSegment object with the first and second set to the corresponding parameters.

public class LineSegment {

 private TwoDPoint first, second;

 public LineSegment(TwoDPoint p1, TwoDPoint p2) {

 first = new TwoDPoint(p1);

 second = new TwoDPoint(p2);

 }

}

(b) (15 pts.) Write the Java code for a method named shift(int dx, int dy) which “shifts” the invoking line segment in the x and y directions by dx, dy, respectively, and returns a new LineSegment object. Thus, the x coordinates of both of the new LineSegment’s end points equal to dx plus the corresponding x coordinates of the invoking LineSegment’s; similarly, the y coordinates of both of the new LineSegment’s end points equal to dy plus the corresponding y coordinates of the invoking LineSegment’s.

public LineSegment shift(int dx, int dy) {

 TwoDPoint p1 = new TwoDPoint

 (first.getX() + dx, first.getY() + dy);

 TwoDPoint p2 = new TwoDPoint

 (second.getX() + dx, second.getY() + dy);

 return new LineSegment(p1, p2);

}

3. (45 pts.) In this problem you are to define a Pixel class by extending the TwoDPoint class with an additional Color variable for each Pixel object. Thus, each Pixel object will have the x and y coordinates inherited from the base class TwoDPoint, and a Color variable. The Color class must be imported from the java.awt package. In the Color class, there are predefined class constants such as Color.black, Color.blue, Color.red, etc., for different colors. (Thus, you can create Color objects using these predefined colors such as: Color c = Color.red, etc.) Now answer each of the following questions with the proper Java syntax. In particular, show the difference between your writing of upper-case and lower-case letters very clearly.

(a) (15 pts.) Write the class Pixel with the addition of the Color variable named color (note the use of lower-case letter c.). Include two constructors: Pixel() which creates a Pixel object with the x, y coordinates set to 0, and color set to Color.black; and Pixel(int r, int t, Color c) which creates a Pixel object with the x, y coordinates set to r, t, respectively, and color set to c.

import java.awt.*;

public class Pixel extends TwoDPoint {

 Color color;

 public Pixel() {

 super();

 color = Color.black;

 }

 public Pixel(int x, int y, Color c) {

 super(x, y);

 color = c;

 }

}

(b) (5 pts.) Write a toString() method for the Pixel class which returns a String that first says: “A Pixel: “, followed by what the toString() method of the TwoDPoint class says about the TwoDPoint component of the invoking Pixel object.

public String toString() {

 return "A Pixel: " + super.toString();

}

(c) (10 pts.) Draw the UML diagrams for the TwoDPoint and Pixel classes, and show their relationship in the diagram.

(d) (5 pts.) Write a main() method for this Pixel class (as part of the same Pixel.java file) which creates a Pixel object named px1 by calling the constructor with no parameters; creates a Pixel object named px2 by calling the constructor passing 10 and 20 as the x and y coordinates, respectively, and passing Color.green as the Color parameter.

public static void main(String[] args) {

 Pixel px1 = new Pixel();

 Pixel px2 = new Pixel(10, 20, Color.green);

}

(e) (5 pts.) Assuming you have completed the previous parts (a) through (d), suppose the following statements are added to the main() method:

 TwoDPoint p1 = px2; // px2 is created in Part (d)

 System.out.println(p1.toString());

Do these statements cause compile-time errors or run-time errors? If so, explain what they are; if not, what would be the output?

No errors (compile-time or runtime); the output is:

A Pixel: x coordinate = 10, y coordinate = 20

(f) (5 pts.) Assuming you have completed the previous parts (a) through (c), suppose the following statements are added to the main() method:

Pixel px3 = (Pixel)new TwoDPoint(10, 20);

System.out.println(px3.toString());

Do these statements cause compile-time errors or run-time errors? If so, explain what they are; if not, what would be the output?

No compile-time errors, but there is a runtime error caused by casting a TwoDPoint object to a Pixel reference px3, causing a classCastException (i.e., incompatible types).

/** demonstrate class structure, including public, protected, and

 private instance variables, class (static) variable, use of

 public "access" methods. */

public class TwoDPoint {

 private int x; // accessible only within this class

 private int y;

 protected static int countPoints = 0; /* accessible within this

 and any subclasses, static means a class variable */

 /* several overloaded constructors, i.e. same name with

 different "signatures" */

 public TwoDPoint() {

 x = y = 0;

 ++countPoints;

 }

 public TwoDPoint(int r, int s) {

 x = r; y = s;

 ++countPoints;

 }

 public TwoDPoint(TwoDPoint p) {

 // call own constructor, "this" refers to own object

 this(p.getX(), p.getY());

 }

 // provide some publicly accessible methods

 public int getX() {

 return x;

 }

 public int getY() {

 return y;

 }

 public void setX(int r) {

 x = r;

 }

 public void setY(int s) {

 y = s;

 }

 // override the existing toString() method

 public String toString() {

 return new String("x coordinate = " + x + ", y coordinate = " + y);

 }

 public double distance(TwoDPoint p) {

 /* call the Math class's method sqrt() prefixing with the

 class name Math */

 return Math.sqrt((this.getX() - p.getX())*

 (this.getX() - p.getX()) + (this.getY() - p.getY())*

 (this.getY() - p.getY()));

 }

 public static double dist(TwoDPoint p1, TwoDPoint p) {

 return Math.sqrt((p1.getX() - p.getX())*

 (p1.getX() - p.getX()) + (p1.getY() - p.getY())*

 (p1.getY() - p.getY()));

 }

}

methods

variables

objects

class

model

maintainability

java applets

java apps

programming in the small

design

protected

private

static

void

encapsulation

implementation

byte code

programming in the large

java file

abstraction

TwoDPoint

int x

int y

getX()

getY()

setX()

setY()

String toString()

distance(TwoDPoint p)

Pixel

Color color

String toString()

