COP3330.01, Fall 2001

Assigned: 10/16/2001

S. Lang

Assignment #4

Due: 10/25 in class

Note: Minor revisions are added on 10/18 and highlighted in boldface.

The objectives of this assignment are to learn how to write and use interfaces, buffered file I/O, the Vector class, and command-line arguments. You will use the abstract class Employee.java and its two extended classes Boss.java and HourlyWorker.java provided by the instructor (posted on the web for this assignment). Basically, you need to write a program that reads Employee objects (Boss or HourlyWorker) from a text file whose name specified on the command line, sorts the records so that the Boss objects appear before the HourlyWorker objects, and within each type with higher earnings appearing before the lower ones. A main() method is used to read the command-line arguments for the input and output file names, sort the input records, then write the output to the output file. Detailed requirements are given as follows:

(1) Use the instructor-provided java classes Employee.java, Boss.java and HourlyWorker.java, which define these Employee objects and their methods.

(2) Create an interface named SortOutput that contains two (public abstract) methods: void sort(), and void output(String outFileName). The purpose of sort() is to sort the invoking Vector object; the purpose of output(String outFileName) is to create an output file named outFileName and write the objects of the invoking Vector to that file. There is no implementation of these methods in the interface.

(3) Create a (concrete) class named SortedEmployees which implements the interface SortOutput, and contains the following methods:

· SortedEmployees(String inFileName), a constructor that reads Employee records from the file inFileName, into a Vector which is a private instance variable;

· sort(), which implements the method of the interface, by using a sorting method (any method) to arrange the Employee objects so that the Boss objects appear before the HourlyWorker objects, and within each group with the higher earnings before the lower ones;

· output(String outFileName), which implements the method of the interface.

Note that you need to use a Vector (a private instance variable) to hold the input objects since the number of records is unknown; you probably need another instance variable to count the actual number of Employee records read from the file. Catch exceptions due to I/O including bad input records and input file not found, then print appropriate error messages and exit the program.

(4) Create a (concrete) class TestSortedEmployees which contains a main() method to do some testing as follows:

· main(String[] args) uses the command-line arguments args[] to pass in the input and output file names; the main() exits if either or both arguments are missing with an error message printed to the screen; otherwise, if there is no error the main() creates a SortedEmployees object, calls sort(), then calls output() with the specified output file name.

The instructor will provide the classes Employee.java, Boss.java, and HourlyWorker.java, and provide an input file and the corresponding output file for testing your program. Other sample programs will be discussed in class which demonstrate command-line arguments (e.g., see p. 82 of the textbook), the Vector class of its methods, and file I/O (see pp. 304 – 309, Section 6.4.2 of the textbook). Prepare your homework the same way as done in previous assignments: put the source files on a disk, include a hardcopy of the source and a hardcopy of the output file, put all information in a brown envelope with your name, social security number, and which java environment you use (jdk or JBuilder), written on the envelope. The JBuilder users need to use the command prompt (DOS) window to pass the command-line arguments to the main() method.

