
Spring 2015 COP 3223 Section 4 Syllabus

Introduction to C Programming

Course Website: http://www.cs.ucf.edu/courses/cop3223/spr2015

Section Website: http://www.cs.ucf.edu/courses/cop3223/spr2015/section4

Course Prerequisites: No formal requirements except a background in precalculus mathematics

Lecturer: Arup Guha Email: dmarino@cs.ucf.edu

Office: HEC – 240 Phone Number: 321-663-7749 (cell)

Office Hours: http://www.cs.ucf.edu/~dmarino/ucf/OH.html

Note: I do NOT check my WebCourses email. Please email me at

dmarino@cs.ucf.edu to contact me.

Course Description: COP 3223 provides an introduction to the C programming language for

those with no prior programming experience. The course aims to teach the syntax and use of

major constructs of the C language and will not focus on algorithmic design (COP 3502 focuses

on algorithmic design). Some of these constructs include: conditional statements, loops,

functions, arrays, pointers, strings, structures, and file I/O.

Addendum to this section of the course: For students who already have programming

experience, I will offer one opportunity for an “automatic A” in the course. During the first four

weeks of the course, students who choose to attempt for this option will have to do one EXTRA

program on top of those assigned to the whole class and take the final exam for course. If

students perform well enough on these two components, then they will automatically be awarded

an A for the course. If they do not, they will have already kept up with all of the regular course

assignments and will simply be graded like the rest of the students in the course.

Recommended Course Textbook: Programming Knights: An Introduction to Computer

Programming in Python and C

This custom textbook was specifically written for the course that we teach at UCF with the goal

of bringing down cost and also providing a book that mirrored how the course is taught. This

book will be cheaper than a new copy of the previous book, but potentially more expensive than

a used copy of the previous book. Any of the previous textbooks for the course will be

satisfactory for those who want a book of some sort. Here are two of these previous textbooks:

C Programming by K.N. King, ISBN 978-0-393-97950-3.

Problem Solving and Program Design in C by Hanly and Koffman, ISBN: 978-0-13-293649-1

Many students succeed by using freely posted materials online and making good use of Google

searches. Whether or not you choose to get a book largely depends on how you prefer to learn.

mailto:dmarino@cs.ucf.edu

Important Course Policies:

1) Cheating will not be tolerated. If a student is caught cheating, then the grade on that

assignment for all students knowingly involved (the person providing answers as well as the

one taking the answers) will be a -25%. (Note, this is less than 0%.) Since discussion of

concepts with other students is often helpful, cheating must be more clearly defined. In

particular, the following items are cheating: copying a segment of code of three lines or more

from another student from a printout or by looking at their computer screen, taking a copy of

another student's work and then editing that copy, and sitting side by side while writing code for

assignments and working together on segments of code. In all of these situations, BOTH people

responsible, the one from whom the three lines of code are taken as well as the person who takes

those lines of code are engaging in academic misconduct. For example, if someone makes an

electronic copy of their code accessible to ANYONE in the class (except for themselves) before

an assignment is due, they are automatically culpable of academic misconduct. It does not matter

if the recipient of the code doesn’t use it, uses it a little, or copies it directly. Furthermore, based

on the severity of the case, the entire course grade for the student may be lowered an entire letter

grade. If you get stuck on an assignment, please ask either a TA or the instructor for help

instead of getting help from another student. Part of the learning process in programming

involves debugging on your own. In our experience, when a student helps another student with

an assignment, they rarely allow the student getting help to "figure out" problems on their own.

Ultimately, this results in a lack of debugging experience for the student receiving help. The goal

of the TAs and instructors is to provide the facilitation necessary for students to debug and fix

their own programs rather than simply solving their problems. But, you are encouraged to

work together on any non-graded programs to enhance the learning process.

2) In order to take a make-up exam, you must request one from the instructor. Since this class is

an on-line course, every attempt will be made to facilitate make-up exams, since it's possible that

students' schedules won't allow them to come to campus at the appointed time for exams. For

each exam, directions for specifying make up exams will be posted in WebCourses. Please

follow these directions to minimize scheduling errors. If a student can’t come to campus at all,

they will be responsible for finding a remote proctor to administer their exam. In the past, I

offered alternate exams on the Wednesday, Thursday and Friday on campus before the

Saturday exam. I will do the same this semester.

3) Both the course web page and WebCourses will be crucial elements of the course. It is your

responsibility to check both of these every three days. Some clarifications may only be

announcements or videos via WebCourses, so make sure to check all announcements in a prompt

manner.

Tentative Grading Criteria – Regular Section

Component Percentage of Total Grade

Individual Programming Assignments (12) 36% (3% each)

Exam #1 20%

Exam #2 20%

Final Exam 24%

Programming Assignments

Each programming assignment is to be done individually. To make sure students are keeping up

with the course, assignments will be due every Friday, except for the first Friday and the weeks

with exams. NO LATE ASSIGNMENTS WILL BE ACCEPTED!!! Also, note that

assignments are to be completed individually. If we fall behind, some due dates will be changed.

To get the due date of each assignment, check WebCourses. Due dates will NOT be posted

anywhere else.

Exams

For each exam, you’ll be allowed to use a limited amount of notes as an aid. No calculators will

be allowed on any exam. Other specifics for the allowable aids will be given online a few days

before the exams. Exams will be given ON CAMPUS on the following dates and times:

Exam Day Date Time Location

Exam #1 Saturday Feb. 14 8:00 – 9:15 am CB2-106

Exam #2 Saturday Apr. 4 8:00 – 9:15 am CB2-106

Final Exam Saturday May 2 7:00 – 9:50 am

Each exam will last for 75 minutes except for the final exam, which will last for two hours

and fifty minutes.

If you can’t make these times, some alternate dates/times will be provided. If you can’t

come to campus, you must arrange for a remote proctor. In these cases, you must provide

for me the name and email address of your proctor BY January 31, 2015.

Letter Grades

I may assign +/- grades if I feel that they are appropriate. I assign letter grades a bit differently

than other professors. I do not use a straight 90-100, 80-90, etc. grading scale. Rather, at the end

of the semester, I chose my lines for each grade. The drawback to this technique is that students

do not know exactly what letter grade they are earning during the semester. The advantage to it is

that if I make a difficult exam, I can adjust my grades accordingly so students don't get punished

for my exam making skills. In the past, my A line has ranged from about 83-88%, my B line has

ranged from 67-72%, and my C line typically ranges from 52-55%. I do not guarantee that these

will be accurate for this semester, but I wanted to give you a rough idea of how the grades have

gone in the past. After each exam, I will update WebCourses to show you what letter grade you

have at that point in time. If you have further questions about my grading philosophy, please read

the document I have posted at http://www.cs.ucf.edu/~dmarino/ucf.

Tentative Grading Criteria – Experienced Section

Programming Assignments

Students need to submit each regular programming assignment by its due date as well as ONE

EXTRA ASSIGNMENT (Charity Ball).

Exams

Experienced students will be given the final exam at CB2-204 on February 7th from 8 am – 9:45

am.

Final Letter Grade

If students score at least an 80% on the final exam and 80% on the given programming

assignment, they will automatically be awarded an A for the course and will not have to do any

further assignments or exams. It may be the case that after giving the exam and seeing its

difficulty I adjust the criteria for awarding automatic As. (For example, if I give a difficult final

exam, I may lower the 80% threshold.)

If a student doesn’t earn an A in this manner they will be required to complete the rest of the

course and will be graded using the exact same criteria as the regular section of the course.

Tentative Schedule – Regular Section

Week M/T W/R/F Saturday Reading

Jan 12-26 Python/IDLE Variables, I/O

Prog #1 Due

 Python – Cht 1

Jan 20-23 Formula Probs If Statement

Prog #2 Due

 Python – Cht 2

Jan 26-30 If Statement

Loops

Prog #3 Due

 Python – Cht 3

Feb 2-6 Loops

Exp Prog Due

Turtle

Prog #4 Due

Exp Final Exam Python – Cht 3

Feb 9-13 Intro to C

Vars, I/O etc.

Prog #5 Due

Exam #1 C – Chts 1, 2

Feb 16-20 Arith Expr

if statement

Prog #6 Due

Feb 23-27 if statement

for loop

Prog #7 Due

 C – Cht 3

Mar 2-6 while loop

File I/O

Prog #8 Due

 C – Cht 4

Mar 9-13 SPRING BREAK!!! NONE

Mar 16-20 Arrays

Arrays

C – Cht 5

Mar 23-27 Functions Prog

#9 Due

Functions

 C – Cht 7

Mar 30-Apr 3 Functions

Withdrawal

Deadline

Functions

Exam #2 C – Chts 8, 9

Apr 6-10 Strings

Prog #10 Due

More Strings

C – Cht 10

Apr 13-17 Arrays+Func Strings+Func

Prog #11 Due

 C – Cht 11

Apr 20-24 Structs

Structs

 C – Cht 12

Apr 27-May 2 Structs

Prog #12 Due

Thanksgiving Final Exam

Note: These schedules are tentative.

Important Note for Beginning Programmers

Due to the high volume of students in the course and the limited resources we have for grading,

the amount of graded work is minimal compared to what is actually necessary to learn how to

program in C comfortably. We (the instructors and teaching assistants) strongly suggest that you

write more programs than are actually assigned for you to turn in. The course web page will

contain several suggestions of programs to write. Most lectures will contain sample programs

that you can cut and paste, compile and edit. You may show the teaching assistants or course

instructors extra programs you have written at any time. Since these aren't graded, the TAs can

give you more feedback and help with them than on assignments. Also, it is encouraged that you

write extra programs with others in the course; often times learning is facilitated by working with

others. You must work alone for all graded programming assignments, however.

As the note above indicates, this class is far more time consuming than other introductory classes

for many students. Unlike other introductory classes which simply ask students to read and

regurgitate information, this class requires students to learn a new language, and then use that

language to solve non-trivial problems that students have not seen before. It takes most students

some time to get comfortable and confident with their programming skills. For each student, the

amount of time and practice necessary to reach this level is different. Although we don't want to

scare anyone, we do want to be up front about the fact that this class is a lot of work, and it's a

different type of work than many other classes. (For example, it's possible you may get stuck on

one error for a couple hours without making any progress. Once you fix that error, you might be

able to finish your whole program in another thirty minutes.)

Important Note for Experienced Programmers

Although you may understand all the general concepts of programming taught in this class, if

you've never programmed in C or Python, you may not know some of the very specific details

that differentiate C and Python from other languages. We do write test questions that highlight

these subtle differences and other subtleties of the C and Python languages. Make sure you read

the textbook carefully so that you are aware of these details. We have had instances of a

beginning programmer receiving the highest grade in the course, beating out many others who

had been programming for three or four years because the beginner actually read the textbook

and paid attention to those details that the experiences programmers missed.

